化工学报 ›› 2021, Vol. 72 ›› Issue (1): 304-319.DOI: 10.11949/0438-1157.20201019
收稿日期:
2020-07-27
修回日期:
2020-10-20
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
潘建明
作者简介:
卞维柏(1988—),男,博士后,讲师,基金资助:
BIAN Weibai1,2(),PAN Jianming2()
Received:
2020-07-27
Revised:
2020-10-20
Online:
2021-01-05
Published:
2021-01-05
Contact:
PAN Jianming
摘要:
电吸附技术得益于环保、清洁、简单和节能的技术优势,在海水脱盐淡化及污染物吸附处理领域具有重要的应用潜力。如何构建高电荷容量的吸附电极是构建高效电吸附装置、提高吸附效率的关键所在。本文从电吸附技术原理出发,介绍了电吸附技术吸附储存离子的双电层理论模型,并对电吸附技术的研究进展进行了总结。随后从吸附电极材料制备角度对碳吸附电极、层状金属氧化物吸附电极、复合型吸附电极分别进行综述,对每一类电极材料特点及不足进行了总结,归纳分析了针对各类材料不足之处的解决方案,并基于高效电吸附技术实际应用目标,对吸附电极材料的设计制备进行了展望。
中图分类号:
卞维柏, 潘建明. 电吸附技术及吸附电极材料研究进展[J]. 化工学报, 2021, 72(1): 304-319.
BIAN Weibai, PAN Jianming. Research progress on electro-sorption technology and fabrication of adsorptive electrode materials[J]. CIESC Journal, 2021, 72(1): 304-319.
1 | Rosegrant M W, Cline S A. Global food security: challenges and policies[J]. Science, 2003, 302(5652): 1917-1919. |
2 | McGinnis R L, Elimelech M. Global challenges in energy and water supply: the promise of engineered osmosis[J]. Environ. Sci. Technol., 2008, 42(23): 8625-8629. |
3 | Lu X L, Castrillón S R V, Shaffer D L, et al. In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance[J]. Environ. Sci. Technol., 2013, 47(21): 12219-12228. |
4 | Hichour M, Persin F, Sandeaux J, et al. Fluoride removal from waters by donnan dialysis[J]. Sep. Purif. Technol., 1999, 18(1): 1-11. |
5 | Saha S. Treatment of aqueous effluent for fluoride removal[J]. Water Res., 1993, 27(8): 1347-1350. |
6 | Porada S, Zhao R, Wal A V D, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Prog. Mater. Sci., 2013, 58(8): 1388-1442. |
7 | Kim C, Lee J, Kim S, et al. TiO2 sol-gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization[J]. Desalination, 2014, 342: 70-74. |
8 | Lee J, Kim S, Yoon J. Rocking chair desalination battery based on prussian blue electrodes[J]. ACS Omega, 2017, 2(4): 1653-1659. |
9 | Liu Y, Xu X T, Wang M, et al. Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization[J]. Chem. Commun., 2015, 51: 12020-12023. |
10 | LiuY, Lu T, Sun Z, et al. Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization[J]. J. Mater. Chem. A., 2015, 3: 8693-8700. |
11 | Zhao C X, Zhang L F, Ge R S, et al. Treatment of low-level Cu(Ⅱ) wastewater and regeneration through a novel capacitive deionization-electrodeionization(CDI-EDI) technology[J]. Chemosphere, 2019, 217: 763-772. |
12 | Pierre A C, Pajonk G M. Chemistry of aerogels and their applications[J]. Chem. Rev., 2002, 102(11): 4243- 4266. |
13 | Wang G, Qian B Q, Dong Q, et al. Highly mesoporous activated carbon electrode for capacitive deionization[J]. Sep. Purif. Technol., 2013, 103: 216-221. |
14 | Zou L D, Li L X, Song H H, et al. Using mesoporous carbon electrodes for brackish water desalination[J]. Water Res., 2008, 42(8/9): 2340-2348. |
15 | Choi J H. Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process[J]. Sep. Purif. Technol., 2010, 70(3): 362-366. |
16 | Chen Z, Song C, Sun X, et al. Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes[J]. Desalination, 2011, 267(2/3): 239-243. |
17 | Liu X, Zhou A, Pan T, et al. Ultrahigh-rate-capability of a layered double hydroxide supercapacitor based on a self-generated electrolyte reservoir[J]. J. Mater. Chem. A., 2016, 4: 8421-8427. |
18 | Cai J, Zhang Y, Pan B, et al. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger[J]. Water Res., 2016, 102: 109-116. |
19 | Zou Y, Wang X, Wu F, et al. Controllable synthesis of Ca-Mg-Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(Ⅵ) from wastewater solutions[J]. ACS Sustain. Chem. Eng., 2017, 5(1): 1173-1185. |
20 | Wan D, Liu H, Zhao X, et al. Role of the Mg/Al atomic ratio in hydrotalcite-supported Pd/Sn catalysts for nitrate adsorption and hydrogenation reduction[J]. J. Colloid Interf. Sci., 2009, 332(1): 151-157. |
21 | Yue C J, Xu Q N, Ping G L, et al. Ionic [Ru] complex with recyclability by electro-adsorption for efficient catalytic transfer hydrogenation of aryl ketones[J]. Pol. J. Chem.Technol., 2007, 19(4): 75-79. |
22 | Kang J, Kim T Y, Kyusik J, et al. Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization[J]. Desalination, 2014, 352: 52-57. |
23 | Eran A, Malachi N, Yaniv B, et al. Limitations of charge efficiency in capacitive deionization processes (Ⅲ): the behavior of surface oxidized activated carbon electrodes[J]. Electrochim. Acta., 2010, 56(1): 441-447. |
24 | Oki T K, Kanae S J. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072. |
25 | Tang W, Kovalsky P, Cao B, et al. Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization[J]. Water Res., 2016, 99: 112-121. |
26 | Wang S, Wang G, Wu T, et al. Membrane-free hybrid capacitive deionization system based on redox reaction for high-efficiency NaCl removal[J]. Environ. Sci. Technol., 2019, 53(11): 6292-6301. |
27 | Xu D, Tong Y, Yan T, et al. N, P-codoped meso-/microporous carbon derived from biomass materials via a dual-activation strategy as high-performance electrodes for deionization capacitors[J]. ACS Sustain. Chem. Eng., 2017, 5(7): 5810-5819. |
28 | Li Y, Hussain I, Qi J, et al. N-doped hierarchical porous carbon derived from hyper cross-linked diblock copolymer for capacitive deionization[J]. Sep. Purif. Technol., 2016, 165: 190-198. |
29 | Xie J, Xue Y, He M, et al. Organic-inorganic hybrid binder enhances capacitive deionization performance of activated-carbon electrode[J]. Carbon, 2017, 123: 574-582. |
30 | Bian Y H, Yang X F, Liang P, et al. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon[J]. Water Res., 2015, 85: 371-376. |
31 | Stern A. On the counter-transference in psychoanalysis[J]. Psychoanalytic Review, 1924, 11(2): 166-174. |
32 | 吴旭冉, 贾志军, 马洪运, 等. 电化学基础(Ⅲ)——双电层模型及其发展[J]. 储能科学与技术, 2013, 2(2): 152-156. |
Wu X R, Jia Z J, Ma H Y, et al. Fundamentals of electrochemistry(Ⅲ): Electrical double layer model and its development[J]. Energy Storage Science and Technology, 2013, 2(2): 152-156. | |
33 | Grahame D C. The electrical double layer and the theory of electrocapillarity[J]. Chem. Rev., 1947, 41(3): 441-501. |
34 | Zhang C, He D, Ma J, et al. Faradaic reactions in capacitive deionization(CDI)-problems and possibilities: a review[J]. Water Res., 2018, 128: 314-330. |
35 | Gao X, Omosebi A, Landon J, et al. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted dsorption-desorption behavior[J]. Energy Environ. Sci., 2015, 8(3): 897-909. |
36 | Yang J, Zou L D, Choudhury N R. Ion-selective carbon nanotube electrodes in capacitive deionisation[J]. Electrochim. Acta., 2013, 91: 11-19. |
37 | Zhao Y J, Wang Y, Wang R G, et al. Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes [J]. Desalination, 2013, 324: 127-133. |
38 | Dutta S, Huang S Y, Chen C, et al. Cellulose framework directed construction of hierarchically porous carbons offering high-performance capacitive deionization of brackish water[J]. ACS Sustain. Chem. Eng., 2016, 4(4): 1885-1893. |
39 | Linneen N, Delnick F, Islam S Z, et al. Application of the macrohomogeneous line model for the characterization of carbon aerogel elec-trodes in capacitive deionization[J]. Electrochim. Acta., 2019, 301: 1-7. |
40 | Chang L, Hang Y. 3D Channel-structured graphene as efficient electrodes for capacitive deionization[J]. J. Colloid Interf. Sci., 2018, 538: 420-425. |
41 | Lee B, Park N, Kang K S, et al. Enhanced capacitive deionization by dispersion of CNTs in activated carbon electrode[J]. ACS Sustain. Chem. Eng., 2018, 6(2): 1572-1579. |
42 | Wang H T, Na C Z. Binder-free carbon nanotube electrode for electrochemical removal of chromium[J]. ACS Appl. Mater. Interf., 2014, 6(2): 20309-20316. |
43 | Liu P, Yan T, Shi L, et al. Graphene-based materials for capacitive deionization[J]. J. Mater. Chem. A, 2017, 5: 13907-13943. |
44 | Almarzooqi F A, Alghaferi A A, Saadat I, et al. Application of capacitive deionisation in water desalination: a review[J]. Desalination, 2014, 342: 3-15. |
45 | Landon J, Gao X, Kulengowski B, et al. Impact of pore size characteristics on the electrosorption capacity of carbon xerogel electrodes for capacitive deionization[J]. J. Electrochem. Soc., 2012, 159(11): 1861-1866. |
46 | Wang G, Qian B Q, Dong Q, et al. Highly mesoporous activated carbon electrode for capacitive deionization[J]. Sep. Purif. Technol., 2013, 103: 216-221. |
47 | Li H, Gao Y, Pan L, et al. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes[J]. Water Res., 2008, 42(20): 4923-4928. |
48 | Wang L, Wang M, Huang Z H, et al. Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes[J]. J. Mater. Chem., 2011, 21: 18295-18299. |
49 | Zhao R, Biesheuvel P M, Miedema H, et al. Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization[J]. J. Phys. Chem. Lett., 2010, 1(1): 205-210. |
50 | Huang Z H, Wang M, Wang L, et al. Relation between the charge efficiency of activated carbon fiber and its desalination performance[J]. Langmuir, 2012, 28: 5079- 5084. |
51 | Farmer J C, Fix D V, Mack G V, et al. Capacitive deionization of NaCI and NaNO3 solutions with carbon aerogel electrodes[J]. J. Electrochem. Soc., 1996, 143: 159-169. |
52 | Jia F, Sun K, Yang B, et al. Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water[J]. Desalination, 2018, 446: 21-30. |
53 | Biesheuvel P M, Suss M E, Hamelers H V M, et al. Theory of water desalination by porous electrodes with immobile chemical charge[J]. Colloid. Interfac. Sci., 2015, 9: 1-5. |
54 | Wu T T, Wang G, Zhan F, et al. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization[J]. Water Res., 2016, 93: 30-37. |
55 | Liu P Y, Wang H, Yan T T, et al. Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization[J]. J. Mater. Chem. A., 2016, 4: 5303-5313. |
56 | Zhang J, Yan T, Fang J, et al. Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal-organic frame-works[J]. Environ. Sci.: Nano, 2020, 7(3): 926-937. |
57 | Gao T, Li H, Zhou F, et al. Mesoporous carbon derived from ZIF-8 for high efficient electrosorption[J]. Desalination, 2019, 451: 133-138. |
58 | Wang H, Wei D, Gang H, et al. Hierarchical porous carbon from the synergistic "Pore-on-Pore"strategy for efficient capacitive deionization[J]. ACS Sustainable Chem. Eng., 2020, 8(2): 1129-1136. |
59 | Chen Y, Li Z, Zhu Y, et al. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction[J]. Adv. Mater. 2019, 31(8): 1806312. |
60 | Li Y J, Liu Y, Wang M, et al. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization[J]. Carbon, 2018, 130: 377-383. |
61 | Liu Y, Chen T Q, Lu T, et al. Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization[J]. Electrochim. Acta, 2015, 158: 403-409. |
62 | Liu X J, Liu H, Mi M J, et al. Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization[J]. Sep. Purif. Technol., 2019, 224: 44-50. |
63 | Wang G, Deng J, Yan, T, et al. Turning on electrocatalytic oxygen reduction by creating robust Fe-Nx species in hollow carbon frameworks viain-situ growth of Fe doped ZIFs on g-C3N4 [J]. Nanoscale, 2020, 12(9): 5601-5611. |
64 | Peng Y, Lu B, Chen S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage[J]. Adv. Mater., 2018, 30(48): 1801995. |
65 | Wang G Z, Yan T T, Zhang J P, et al. Trace-Fe-enhanced capacitive deionization of saline water by boosting electron transfer of electro-adsorption sites[J]. Environ. Sci. Technol., 2020, 54(13): 8411-8419. |
66 | Zou Y, Wang X, Wu F, et al. Controllable synthesis of Ca-Mg-Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions[J]. ACS Sustain. Chem. Eng., 2017, 5: 1173-1185. |
67 | Lei C, Zhu X, Zhu B, et al. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions[J]. J. Hazard. Mater., 2017, 321: 801-811. |
68 | Li C M, Wei M, Evans D G, et al. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents[J]. Small, 2014, 10: 4469-4486. |
69 | Yuan C, Li J, Hou L, et al. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for super-capacitors[J]. Adv. Funct. Mater., 2012, 22: 4592-4597. |
70 | Xi W, Li H B. The pseudo-capacitive deionization behaviour of CuAl-mixed metal oxides[J]. Environ. Sci.: Water Res. Technol., 2020, 6: 296-302. |
71 | Bai Z Y, Hu C Z, Liu H J, et al. Selective adsorption of fluoride from drinking water using NiAl-layered metal oxide film electrode[J]. J. Colloid Interf. Sci., 2019, 539: 146-151. |
72 | Lei X D, Wang B, Liu J F, et al. Three-dimensional NiAl-mixed metal oxide film: preparation and capacitive deionization performances[J]. RSC Adv., 2014, 4: 41642-41648. |
73 | Hu C Z, Wang T, Dong J J, et al. Capacitive deionization from reconstruction of NiCoAl-mixed metal oxide film electrode based on the"memory effect"[J]. Appl. Surf. Sci., 2018, 459: 767-773. |
74 | KimY J, Choi J H. Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization[J]. Water Res., 2012, 46(18): 6033-6039. |
75 | Yang J, Zou L D, Song H H, et al. Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology[J]. Desalination, 2011, 276(1/2/3): 199-206. |
76 | Zhang D S, Wen X R, Shi L Y, et al. Enhanced capacitive deionization of graphene/mesoporous carbon composites[J]. Nanoscale, 2012, 4: 5440-5446. |
77 | Min X B, Zhu M F, He Y J, et al. Selective removal of Clˉ and Fˉ from complex solution via electrochemistry deionization with bismuth/reduced graphene oxide composite electrode[J]. Chemosphere, 2020, 251: 126319. |
78 | Liu C, Hsu P C, Xie J, et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater[J]. Nat. Energy, 2017, 2: 17007. |
79 | Wang Y, Qu J H, Wu R C, et al. The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode[J]. Water Res., 2006, 40(6): 1224-1232. |
80 | Yin H J, Zhao S L, Wan J W, et al. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water[J]. Adv. Mater., 2013, 25: 6270-6276. |
81 | Hu C Z, Dong J J, Wang T, et al. Nitrate electro-sorption/reduction in capacitive deionization using a novel Pd/NiAl-layered metal oxide film electrode[J]. Chem. Eng. J., 2018, 335: 475-482. |
82 | Bai Z Y, Dong J J, Liu G, et al. Denitrification enhancement by electro-sorption/reduction using a layered metal oxide electrode loaded with Pd-Cu nanoparticles[J]. Electrochem. Commun., 2020, 110: 106607. |
83 | Lyu H X, Hu K, Fan J S, et al. 3D hierarchical layered double hydroxide/carbon spheres composite with hollow structure for high adsorption of dye[J]. Appl. Surf. Sci., 2020, 500: 144037. |
84 | Hong S P, Yoon H S, Lee J H, et al. Selective phosphate removal using layered double hydroxide/reduced graphene oxide(LDH/rGO) composite electrode in capacitive deionization[J]. J. Colloid Interf. Sci., 2020, 564: 1-7. |
85 | Wang J, Gao F F, Du X, et al. A high-performance electroactive PPy/rGO/NiCo-LDH hybrid film for removal of dilute dodecyl sulfonate ions[J]. Electrochim. Acta., 2020, 331: 135288. |
86 | Yang J, Zou L D, Song H H. Preparing MnO2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionisation[J]. Desalination, 2012, 286: 108-114. |
87 | Zhang Y J, Xue J Q, Li F, et al. Preparation of polypyrrole/chitosan/carbon nanotube composite nano-electrode and application to capacitive deionization process for removing Cu2+[J]. Chem. Eng. Process., 2019, 139: 121-129. |
[1] | 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989. |
[2] | 鲁浩天, 陈怡沁, 周静红, 隋志军, 周兴贵. 电化学双电层电容器动态模拟:离子尺寸及扩散系数的优化[J]. 化工学报, 2019, 70(10): 4021-4031. |
[3] | 张兴磊, 王文, 华黎, 衡建坡. 恒流充放电过程中双电层电容器温度特性[J]. 化工学报, 2016, 67(4): 1207-1214. |
[4] | 叶遥立, 郭剑, 潘彬, 成少安. 阳极双电层电容对微生物燃料电池性能的影响[J]. 化工学报, 2015, 66(2): 773-778. |
[5] | 钟溢健, 张济辞, 吴子焱, 尤世界, 王秀蘅, 任南琪. 新型准对称无机膜的正渗透去除Cd2+的效能[J]. 化工学报, 2015, 66(1): 386-392. |
[6] | 杨大勇, 刘莹. 粗糙表面微通道电渗流的数值模拟 [J]. 化工学报, 2008, 59(10): 2577-2581. |
[7] | 赵亮;刘林华 . 闭口微通道电渗流微混合的数值模拟 [J]. CIESC Journal, 2007, 58(12): 3019-3023. |
[8] | 李生娟;王树林;徐波;陈新龙 . 双电层电容器活性炭电极的优化 [J]. CIESC Journal, 2006, 57(7): 1617-1621. |
[9] | 陈福明. 一种去除水中离子的新方法——充电富集法初探 [J]. CIESC Journal, 1999, 50(1): 114-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||