化工学报 ›› 2022, Vol. 73 ›› Issue (3): 975-989.DOI: 10.11949/0438-1157.20211348
收稿日期:
2021-09-17
修回日期:
2021-11-25
出版日期:
2022-03-15
发布日期:
2021-12-08
通讯作者:
房阔,王凯军
作者简介:
王祺(1996—),女,硕士研究生,基金资助:
Qi WANG(),Kuo FANG(),Conghui HE,Kaijun WANG()
Received:
2021-09-17
Revised:
2021-11-25
Online:
2022-03-15
Published:
2021-12-08
Contact:
Kuo FANG,Kaijun WANG
摘要:
随着全球能源危机的加剧和碳中和的提出,污水资源化和能源回收成为近年来的研究热点。电容去离子(CDI)这一新型电化学技术,以节能、无污染等优势受到广泛关注。流动电极电容去离子(FCDI)技术是在CDI技术的基础上,结合离子交换膜及流动电极的新型电化学吸附方法,在保持节能的同时,能够实现连续运行从而不间断地产水。本文重点关注FCDI技术的原理、设计、操作模式、考察指标及在环境领域中的应用(包括污水处理、能源回收及其他新兴应用),全面概述了这项水处理技术的研究进展和未来前景。此外,还介绍了FCDI系统中常用性能评价指标,以便不同系统、不同条件之间进行对比。最后,提出了FCDI技术在未来全面应用中的主要挑战。
中图分类号:
王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989.
Qi WANG, Kuo FANG, Conghui HE, Kaijun WANG. Recent development and future challenges of flow-electrode capacitive deionization[J]. CIESC Journal, 2022, 73(3): 975-989.
1 | Fang K, Gong H, He W Y, et al. Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization[J]. Chemical Engineering Journal, 2018, 348: 301-309. |
2 | Huang X, He D, Tang W W, et al. Investigation of pH-dependent phosphate removal from wastewaters by membrane capacitive deionization (MCDI)[J]. Environmental Science: Water Research & Technology, 2017, 3(5): 875-882. |
3 | Kim D I, Dorji P, Gwak G, et al. Reuse of municipal wastewater via membrane capacitive deionization using ion-selective polymer-coated carbon electrodes in pilot-scale[J]. Chemical Engineering Journal, 2019, 372: 241-250. |
4 | 卞维柏, 潘建明. 电吸附技术及吸附电极材料研究进展[J]. 化工学报, 2021, 72(1): 304-319. |
Bian W B, Pan J M. Research progress on electro-sorption technology and fabrication of adsorptive electrode materials[J]. CIESC Journal, 2021, 72(1): 304-319. | |
5 | 贾雪茹, 胡程月, 王昭玉, 等. 电容去离子技术在水处理领域的研究进展[J]. 四川化工, 2019, 22(4): 25-28. |
Jia X R, Hu C Y, Wang Z Y, et al. Research progress of capacitance deionization technology in the field of water treatment[J]. Sichuan Chemical Industry, 2019, 22(4): 25-28. | |
6 | Blair J W, Murphy G W. Electrochemical demineralization of water with porous electrodes of large surface area[M]//Advances in Chemistry. Washington, D. C.: American Chemical Society, 1960: 206-223. |
7 | 沈彤. 电容去离子脱盐性能增强技术研究[D]. 大连: 大连海事大学, 2020. |
Shen T. Improved technology on capacitive deionization for desalination performance[D]. Dalian: Dalian Maritime University, 2020. | |
8 | Zapata-Sierra A, Cascajares M, Alcayde A, et al. Worldwide research trends on desalination[J]. Desalination, 2021, 519: 115305. |
9 | Jeon S I, Park H R, Yeo J G, et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science, 2013, 6(5): 1471. |
10 | Wang J, Shi Z L, Fang J, et al. The optimized flow-electrode capacitive deionization (FCDI) performance by ZIF-8 derived nanoporous carbon polyhedron[J]. Separation and Purification Technology, 2022, 281: 119345. |
11 | Epshtein A, Nir O, Monat L, et al. Treatment of acidic wastewater via fluoride ions removal by SiO2 particles followed by phosphate ions recovery using flow-electrode capacitive deionization[J]. Chemical Engineering Journal, 2020, 400: 125892. |
12 | Fang K, He W Y, Peng F, et al. Ammonia recovery from concentrated solution by designing novel stacked FCDI cell[J]. Separation and Purification Technology, 2020, 250: 117066. |
13 | Luo K Y, Niu Q Y, Zhu Y, et al. Desalination behavior and performance of flow-electrode capacitive deionization under various operational modes[J]. Chemical Engineering Journal, 2020, 389: 124051. |
14 | Bian Y H, Chen X, Lu L, et al. Concurrent nitrogen and phosphorus recovery using flow-electrode capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7844-7850. |
15 | Ma J X, Ma J J, Zhang C Y, et al. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration[J]. Water Research, 2020, 168: 115186. |
16 | Shin Y U, Lim J, Boo C, et al. Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): review of process optimization and energy efficiency[J]. Desalination, 2021, 502: 114930. |
17 | Gendel Y, Rommerskirchen A K E, David O, et al. Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology[J]. Electrochemistry Communications, 2014, 46: 152-156. |
18 | Zhao X Y, Wei H X, Zhao H C, et al. Electrode materials for capacitive deionization: a review[J]. Journal of Electroanalytical Chemistry, 2020, 873: 114416. |
19 | Zhang C, Ma J, Wu L, et al. Flow electrode capacitive deionization (FCDI): recent developments, environmental applications, and future perspectives[J]. Environmental Science & Technology, 2021, 55(8): 4243-4267. |
20 | Park H R, Choi J, Yang S, et al. Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization[J]. RSC Advances, 2016, 6(74): 69720-69727. |
21 | Porada S, Weingarth D, Hamelers H V M, et al. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation[J]. Journal of Materials Chemistry A, 2014, 2(24): 9313. |
22 | Fang K, Gong H, He W Y, et al. Revealing the intrinsic differences between static and flow electrode capacitive deionization by introducing semi-flow electrodes[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 362-372. |
23 | 吴阳春, 应迪文, 王亚林, 等. 电容脱盐技术及其在废水处理中的应用[J]. 水处理技术, 2019, 45(8): 1-6, 15. |
Wu Y C, Ying D W, Wang Y L, et al. Capacitive desalination technology and its application in wastewater treatment[J]. Technology of Water Treatment, 2019, 45(8): 1-6, 15. | |
24 | Zhang X D, Zuo K C, Zhang X R, et al. Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 243-257. |
25 | Porada S, Zhao R, van der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. |
26 | AlMarzooqi F A, Al Ghaferi A A, Saadat I, et al. Application of capacitive deionisation in water desalination: a review[J]. Desalination, 2014, 342: 3-15. |
27 | 岳智帅. 钠离子插层电极的设计、结构调控及其脱盐性能研究[D]. 银川: 宁夏大学, 2019. |
Yue Z S. The investigation on sodium ion intercalation electrode: design structural control and capacitive deionization derformance[D]. Yinchuan: Ningxia University, 2019. | |
28 | 孙婧, 陆晓赟, 宋海欧, 等. 具有阴阳离子插入行为的电容去离子电极设计[J]. 化学通报, 2021, 84(5): 402-410. |
Sun J, Lu X Y, Song H O, et al. Design of capacitive deionization electrode with insertion of anions and cations[J]. Chemistry, 2021, 84(5): 402-410. | |
29 | Song X, Fang D Z, Huo S L, et al. Exceptional capacitive deionization desalination performance of hollow bowl-like carbon derived from MOFs in brackish water[J]. Separation and Purification Technology, 2021, 278: 119550. |
30 | Cho Y, Yoo C Y, Lee S W, et al. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes[J]. Water Research, 2019, 151: 252-259. |
31 | Xu Y, Duan F, Li Y P, et al. Enhanced desalination performance in asymmetric flow electrode capacitive deionization with nickel hexacyanoferrate and activated carbon electrodes[J]. Desalination, 2021, 514: 115172. |
32 | Xu B, Xu X T, Gao H L, et al. Electro-enhanced adsorption of ammonium ions by effective graphene-based electrode in capacitive deionization[J]. Separation and Purification Technology, 2020, 250: 117243. |
33 | Minh Phuoc N, Anh Thu Tran N, Minh Khoi T, et al. ZIF-67 metal-organic frameworks and CNTs-derived nanoporous carbon structures as novel electrodes for flow-electrode capacitive deionization[J]. Separation and Purification Technology, 2021, 277: 119466. |
34 | 高利军, 白思林, 梁苏岑, 等. ZIF衍生多孔碳纳米纤维用于高效电容去离子的研究[J]. 化工学报, 2020, 71(6): 2760-2767. |
Gao L J, Bai S L, Liang S C, et al. ZIF-derived porous carbon nanofibers for high-efficiency capacitive deionization [J]. CIESC Journal, 2020, 71(6): 2760-2767. | |
35 | Kyaw H H, Al-Mashaikhi S M, Myint M T Z, et al. Activated carbon derived from the date palm leaflets as multifunctional electrodes in capacitive deionization system[J]. Chemical Engineering and Processing - Process Intensification, 2021, 161: 108311. |
36 | Yang S, Park H R, Yoo J, et al. Plate-shaped graphite for improved performance of flow-electrode capacitive deionization[J]. Journal of the Electrochemical Society, 2017, 164(13): E480-E488. |
37 | Hatzell K B, Hatzell M C, Cook K M, et al. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization[J]. Environmental Science & Technology, 2015, 49(5): 3040-3047. |
38 | Seredych M, Hulicova-Jurcakova D, Lu G Q, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon, 2008, 46(11): 1475-1488. |
39 | Elisadiki J, King'ondu C K. Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: a review[J]. Journal of Electroanalytical Chemistry, 2020, 878: 114588. |
40 | Tu Y H, Liu C F, Wang J A, et al. Construction of an inverted-capacitive deionization system utilizing pseudocapacitive materials[J]. Electrochemistry Communications, 2019, 104: 106486. |
41 | Kim S, Yoon H, Shin D, et al. Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide[J]. Journal of Colloid and Interface Science, 2017, 506: 644-648. |
42 | Kim T, Gorski C A, Logan B E. Ammonium removal from domestic wastewater using selective battery electrodes[J]. Environmental Science & Technology Letters, 2018, 5(9): 578-583. |
43 | Gao R, Bonin L, Arroyo J M C, et al. Separation and recovery of ammonium from industrial wastewater containing methanol using copper hexacyanoferrate (CuHCF) electrodes[J]. Water Research, 2021, 188: 116532. |
44 | Liang P, Sun X L, Bian Y H, et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode[J]. Desalination, 2017, 420: 63-69. |
45 | Nadakatti S, Tendulkar M, Kadam M. Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology[J]. Desalination, 2011, 268(1/2/3): 182-188. |
46 | Yasin A S, Yousef Mohamed A, Kim D H, et al. Design of zinc oxide nanoparticles and graphene hydrogel co-incorporated activated carbon for efficient capacitive deionization[J]. Separation and Purification Technology, 2021, 277: 119428. |
47 | 徐斌, 吴文倩, 张毅敏, 等. 石墨烯基电吸附电极材料的研究进展[J]. 水处理技术, 2020, 46(2): 13-18, 24. |
Xu B, Wu W Q, Zhang Y M, et al. Research progress of graphene-based electroadsorption electrode materials[J]. Technology of Water Treatment, 2020, 46(2): 13-18, 24. | |
48 | 杨顺. 阴阳离子脱嵌纳米复合电极材料的制备及其杂化电容脱盐性能[D]. 银川: 宁夏大学, 2019. |
Yang S. Fabrication of anion and cation insertion-deinsertion nano-composites electrode and their hybrid capacitive deionization performance[D]. Yinchuan: Ningxia University, 2019. | |
49 | Akuzum B, Singh P, Eichfeld D A, et al. Percolation characteristics of conductive additives for capacitive flowable (semi-solid) electrodes[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5866-5875. |
50 | Ma J X, He D, Tang W W, et al. Development of redox-active flow electrodes for high-performance capacitive deionization[J]. Environmental Science & Technology, 2016, 50(24): 13495-13501. |
51 | Thu Tran N A, Phuoc N M, Yoon H, et al. Improved desalination performance of flow- and fixed-capacitive deionization using redox-active quinone[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(44): 16701-16710. |
52 | Fang K, Peng F, San E F, et al. The impact of concentration in electrolyte on ammonia removal in flow-electrode capacitive deionization system[J]. Separation and Purification Technology, 2021, 255: 117337. |
53 | Kong W Q, Wang G, Zhang M, et al. Villiform carbon fiber paper as current collector for capacitive deionization devices with high areal electrosorption capacity[J]. Desalination, 2019, 459: 1-9. |
54 | Santos C, Lado J J, García-Quismondo E, et al. Interconnected metal oxide CNT fibre hybrid networks for current collector-free asymmetric capacitive deionization[J]. Journal of Materials Chemistry A, 2018, 6(23): 10898-10908. |
55 | Qu Y, Baumann T F, Santiago J G, et al. Characterization of resistances of a capacitive deionization system[J]. Environmental Science & Technology, 2015, 49(16): 9699-9706. |
56 | Yang S, Jeon S I, Kim H, et al. Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4174-4180. |
57 | Rommerskirchen A, Ohs B, Hepp K A, et al. Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes[J]. Journal of Membrane Science, 2018, 546: 188-196. |
58 | Zhang X D, Yang F, Ma J J, et al. Effective removal and selective capture of copper from salty solution in flow electrode capacitive deionization[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 341-350. |
59 | Lee K S, Cho Y, Choo K Y, et al. Membrane-spacer assembly for flow-electrode capacitive deionization[J]. Applied Surface Science, 2018, 433: 437-442. |
60 | 王振堃. 离子交换膜: 制备、性能及应用[M]. 北京: 化学工业出版社, 1986. |
Wang Z K. Ion Exchange Membrane: Preparation, Performance and Application [M]. Beijing: Chemical Industry Press, 1986. | |
61 | Mao S D, Chen L, Zhang Y, et al. Fractionation of mono- and divalent ions by capacitive deionization with nanofiltration membrane[J]. Journal of Colloid and Interface Science, 2019, 544: 321-328. |
62 | Nativ P, Lahav O, Gendel Y. Separation of divalent and monovalent ions using flow-electrode capacitive deionization with nanofiltration membranes[J]. Desalination, 2018, 425: 123-129. |
63 | Cho Y, Lee K S, Yang S, et al. A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization[J]. Energy & Environmental Science, 2017, 10(8): 1746-1750. |
64 | Choo K Y, Lee K S, Han M H, et al. Study on the electrochemical characteristics of porous ceramic spacers in a capacitive deionization cell using slurry electrodes[J]. Journal of Electroanalytical Chemistry, 2019, 835: 262-272. |
65 | Jeon S I, Yeo J G, Yang S, et al. Ion storage and energy recovery of a flow-electrode capacitive deionization process[J]. Journal of Materials Chemistry A, 2014, 2(18): 6378. |
66 | Ma J, Zhang C, Yang F, et al. Carbon black flow electrode enhanced electrochemical desalination using single-cycle operation[J]. Environmental Science & Technology, 2020, 54(2): 1177-1185. |
67 | Rommerskirchen A, Gendel Y, Wessling M. Single module flow-electrode capacitive deionization for continuous water desalination[J]. Electrochemistry Communications, 2015, 60: 34-37. |
68 | Ha Y, Lee H, Yoon H, et al. Enhanced salt removal performance of flow electrode capacitive deionization with high cell operational potential[J]. Separation and Purification Technology, 2021, 254: 117500. |
69 | Tsai S W, Hackl L, Kumar A, et al. Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI)[J]. Desalination, 2021, 497: 114764. |
70 | Xu L Q, Yu C, Zhang J M, et al. Selective recovery of formic acid from wastewater using an ion-capture electrochemical system integrated with a liquid-membrane chamber[J]. Chemical Engineering Journal, 2021, 425: 131429. |
71 | Dorji P, Kim D I, Hong S, et al. Pilot-scale membrane capacitive deionisation for effective bromide removal and high water recovery in seawater desalination[J]. Desalination, 2020, 479: 114309. |
72 | Chung H J, Kim J, Kim D I, et al. Feasibility study of reverse osmosis-flow capacitive deionization (RO-FCDI) for energy-efficient desalination using seawater as the flow-electrode aqueous electrolyte[J]. Desalination, 2020, 479: 114326. |
73 | Tang K X, Yiacoumi S, Li Y P, et al. Optimal conditions for efficient flow-electrode capacitive deionization[J]. Separation and Purification Technology, 2020, 240: 116626. |
74 | Ha Y, Jung H B, Lim H, et al. Continuous lithium extraction from aqueous solution using flow-electrode capacitive deionization[J]. Energies, 2019, 12(15): 2913. |
75 | Wei Q, Hu Y D, Wang J, et al. Low energy consumption flow capacitive deionization with a combination of redox couples and carbon slurry[J]. Carbon, 2020, 170: 487-492. |
76 | Li D P, Ning X A, Li Y, et al. Nanoarchitectured reduced graphene oxide composite C2N materials as flow electrodes to optimize desalination performance[J]. Environmental Science: Nano, 2020, 7(7): 1980-1989. |
77 | Tang K X, Zhou K. Water desalination by flow-electrode capacitive deionization in overlimiting current regimes[J]. Environmental Science & Technology, 2020, 54(9): 5853-5863. |
78 | Zhang J, Tang L, Tang W W, et al. Removal and recovery of phosphorus from low-strength wastewaters by flow-electrode capacitive deionization[J]. Separation and Purification Technology, 2020, 237: 116322. |
79 | Zhang C Y, Wu L, Ma J X, et al. Integrated flow-electrode capacitive deionization and microfiltration system for continuous and energy-efficient brackish water desalination[J]. Environmental Science & Technology, 2019, 53(22): 13364-13373. |
80 | Xu L Q, Yu C, Tian S Y, et al. Selective recovery of phosphorus from synthetic urine using flow-electrode capacitive deionization (FCDI)-based technology[J]. ACS ES&T Water, 2021, 1(1): 175-184. |
81 | Zhang C Y, Wu L, Ma J X, et al. Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters[J]. Water Research, 2020, 173: 115580. |
82 | Sambrailo D, Ivic J. First land-based plant for RO desalination in Croatia[J]. Desalination, 2000, 132(1/2/3): 329-335. |
83 | Rico D P, Arias M F C. A reverse osmosis potable water plant at Alicante University: first years of operation[J]. Desalination, 2001, 137(1/2/3): 91-102. |
84 | Afonso M D, Jaber J O, Mohsen M S. Brackish groundwater treatment by reverse osmosis in Jordan[J]. Desalination, 2004, 164(2): 157-171. |
85 | Sambrailo D, Ivić J, Krstulović A. Economic evaluation of the first desalination plant in Croatia[J]. Desalination, 2005, 179(1/2/3): 339-344. |
86 | Belkacem M, Bekhti S, Bensadok K. Groundwater treatment by reverse osmosis[J]. Desalination, 2007, 206(1/2/3): 100-106. |
87 | Walha K, Amar R B, Firdaous L, et al. Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison[J]. Desalination, 2007, 207(1/2/3): 95-106. |
88 | Majali F, Ettouney H, Abdel-Jabbar N, et al. Design and operating characteristics of pilot scale reverse osmosis plants[J]. Desalination, 2008, 222(1/2/3): 441-450. |
89 | Alghoul M A, Poovanaesvaran P, Sopian K, et al. Review of brackish water reverse osmosis (BWRO) system designs[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2661-2667. |
90 | Aljundi I H. Second-law analysis of a reverse osmosis plant in Jordan[J]. Desalination, 2009, 239(1/2/3): 207-215. |
91 | Huang X F, Ling J, Xu J C, et al. Advanced treatment of wastewater from an iron and steel enterprise by a constructed wetland/ultrafiltration/reverse osmosis process[J]. Desalination, 2011, 269(1/2/3): 41-49. |
92 | Shen J J, Richards B S, Schäfer A I. Renewable energy powered membrane technology: case study of St. Dorcas borehole in Tanzania demonstrating fluoride removal via nanofiltration/reverse osmosis[J]. Separation and Purification Technology, 2016, 170: 445-452. |
93 | Demircioglu M, Kabay N, Kurucaovali I, et al. Demineralization by electrodialysis (ED)—separation performance and cost comparison for monovalent salts[J]. Desalination, 2003, 153(1/2/3): 329-333. |
94 | Kabay N, İpek Ö, Kahveci H, et al. Effect of salt combination on separation of monovalent and divalent salts by electrodialysis[J]. Desalination, 2006, 198(1/2/3): 84-91. |
95 | Chakrabarty T, Rajesh A M, Jasti A, et al. Stable ion-exchange membranes for water desalination by electrodialysis[J]. Desalination, 2011, 282: 2-8. |
96 | Malek P, Ortiz J M, Schulte-Herbrüggen H M A. Decentralized desalination of brackish water using an electrodialysis system directly powered by wind energy[J]. Desalination, 2016, 377: 54-64. |
97 | Zhao R, Biesheuvel P M, van der Wal A. Energy consumption and constant current operation in membrane capacitive deionization[J]. Energy & Environmental Science, 2012, 5(11): 9520. |
98 | Zhao R, Biesheuvel P M, Miedema H, et al. Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization[J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 205-210. |
99 | Omosebi A, Gao X, Landon J, et al. Correction to asymmetric electrode configuration for enhanced membrane capacitive deionization[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9306. |
100 | Liu Y H, Hsi H C, Li K C, et al. Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4762-4770. |
101 | Lee J H, Bae W S, Choi J H. Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process[J]. Desalination, 2010, 258(1/2/3): 159-163. |
102 | Lee J, Kim S, Kim C, et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques[J]. Energy Environ. Sci., 2014, 7(11): 3683-3689. |
103 | Kim Y J, Choi J H. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane[J]. Separation and Purification Technology, 2010, 71(1): 70-75. |
104 | Kim S, Lee J, Kim C, et al. Na2FeP2O7 as a novel material for hybrid capacitive deionization[J]. Electrochimica Acta, 2016, 203: 265-271. |
105 | Kang J, Kim T, Shin H, et al. Direct energy recovery system for membrane capacitive deionization[J]. Desalination, 2016, 398: 144-150. |
106 | Kang J, Kim T, Jo K, et al. Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization[J]. Desalination, 2014, 352: 52-57. |
107 | Gao X, Omosebi A, Landon J, et al. Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes[J]. Environmental Science & Technology, 2015, 49(18): 10920-10926. |
108 | Farmer J C, Fix D V, Mack G V, et al. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J]. Journal of the Electrochemical Society, 1996, 143(1): 159-169. |
109 | Biesheuvel P M, van Limpt B, van der Wal A. Dynamic adsorption/desorption process model for capacitive deionization[J]. The Journal of Physical Chemistry C, 2009, 113(14): 5636-5640. |
110 | Zhang B J, Boretti A, Castelletto S. Mxene pseudocapacitive electrode material for capacitive deionization[J]. Chemical Engineering Journal, 2022, 435: 134959. |
111 | Porada S, Zhang L, Dykstra J E. Energy consumption in membrane capacitive deionization and comparison with reverse osmosis[J]. Desalination, 2020, 488: 114383. |
112 | Kim T, Dykstra J E, Porada S, et al. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage[J]. Journal of Colloid and Interface Science, 2015, 446: 317-326. |
113 | Porada S, Weinstein L, Dash R, et al. Water desalination using capacitive deionization with microporous carbon electrodes[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1194-1199. |
114 | Długołęcki P, van der Wal A. Energy recovery in membrane capacitive deionization[J]. Environmental Science & Technology, 2013, 47(9): 4904-4910. |
115 | Doornbusch G J, Dykstra J E, Biesheuvel P M, et al. Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(10): 3642-3647. |
116 | Yang S, Choi J, Yeo J G, et al. Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration[J]. Environmental Science & Technology, 2016, 50(11): 5892-5899. |
117 | Yang S, Kim H, Jeon S I, et al. Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation[J]. Desalination, 2017, 424: 110-121. |
118 | He C, Ma J X, Zhang C Y, et al. Short-circuited closed-cycle operation of flow-electrode CDI for brackish water softening[J]. Environmental Science & Technology, 2018, 52(16): 9350-9360. |
119 | Moreno D, Hatzell M C. Influence of feed-electrode concentration differences in flow-electrode systems for capacitive deionization[J]. Industrial & Engineering Chemistry Research, 2018, 57(26): 8802-8809. |
120 | Tang K X, Yiacoumi S, Li Y P, et al. Enhanced water desalination by increasing the electroconductivity of carbon powders for high-performance flow-electrode capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1085-1094. |
121 | Yang F, Ma J J, Zhang X D, et al. Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance[J]. Water Research, 2019, 164: 114904. |
122 | 王森, 易佩, 袁娇娇. CDI及其在去除水中重金属离子方面的研究进展[J]. 应用化工, 2021, 50(9): 2562-2566. |
Wang S, Yi P, Yuan J J. CDI and its progress in the removal of heavy metal ions in water[J]. Applied Chemical Industry, 2021, 50(9): 2562-2566. | |
123 | Zhang C, Wang M, Xiao W, et al. Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI)[J]. Water Research, 2021, 189: 116653. |
124 | 莫剑雄. 电容吸附去离子方法的研究[J]. 水处理技术, 2007, 33(8): 20-22, 33. |
Mo J X. Researches on de-ionizing method by capacitive adsorption[J]. Technology of Water Treatment, 2007, 33(8): 20-22, 33. | |
125 | Tan C, He C, Fletcher J, et al. Energy recovery in pilot scale membrane CDI treatment of brackish waters[J]. Water Research, 2020, 168: 115146. |
126 | 石胜启. 基于石墨带电极的电容法脱盐组件串联装置实验研究[D]. 天津: 天津大学, 2012. |
Shi S Q. Experimental studies on series-wound CDI units with graphite ribbon electrode[D]. Tianjin: Tianjin University, 2012. | |
127 | 莫恒亮, 唐阳, 陈咏梅, 等. 流动电极电吸附(FCDI)与电渗析(ED)耦合实现连续脱盐技术研究[J]. 现代化工, 2019, 39(5): 91-95. |
Mo H L, Tang Y, Chen Y M, et al. Technical research in continuous desalting by coupling flow capacitive deionization and electrodialysis[J]. Modern Chemical Industry, 2019, 39(5): 91-95. | |
128 | 李敏. 电容去离子强化超滤耦合系统的污水再生特性与机制研究[D]. 北京: 北京林业大学, 2020. |
Li M. Characteristics and mechanism of wastewater reclamation of a capacitive deionization enhanced ultrafiltration system[D]. Beijing: Beijing Forestry University, 2020. | |
129 | 张须媚, 王霜, 高娟娟, 等. 电容去离子技术在水处理中的应用[J]. 水处理技术, 2018, 44(9): 16-21, 31. |
Zhang X M, Wang S, Gao J J, et al. Application of capacitive deionization technology in water treatment[J]. Technology of Water Treatment, 2018, 44(9): 16-21, 31. | |
130 | Xu L Q, Yu C, Mao Y F, et al. Can flow-electrode capacitive deionization become a new in situ soil remediation technology for heavy metal removal? [J]. Journal of Hazardous Materials, 2021, 402: 123568. |
131 | 蒲海, 吴敏, 熊小刚. 聚苯胺-铁氰化铜复合材料的制备与铵离子的选择性回收研究[J]. 塑料科技, 2020, 48(11): 54-58. |
Pu H, Wu M, Xiong X G. Study on synthesis and selective recovery of ammonia ion of polyaniline-copper hexacyanoferrate composite[J]. Plastics Science and Technology, 2020, 48(11): 54-58. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[5] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[6] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[7] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[8] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[9] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[10] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[11] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[12] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[13] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[14] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[15] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 780
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1296
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||