化工学报 ›› 2022, Vol. 73 ›› Issue (3): 975-989.doi: 10.11949/0438-1157.20211348

• 综述与专论 • 上一篇    下一篇

流动电极电容去离子技术综述:研究进展与未来挑战

王祺(),房阔(),贺聪慧,王凯军()   

  1. 清华大学环境学院,北京 100084
  • 收稿日期:2021-09-17 修回日期:2021-11-25 出版日期:2022-03-15 发布日期:2022-03-14
  • 通讯作者: 房阔,王凯军 E-mail:547544159@qq.com;kina_fangkuo@163.com;wkj@tsinghua.edu.cn
  • 作者简介:王祺(1996—),女,硕士研究生,547544159@qq.com
  • 基金资助:
    国家科技重大专项课题(2018ZX07105003)

Recent development and future challenges of flow-electrode capacitive deionization

Qi WANG(),Kuo FANG(),Conghui HE,Kaijun WANG()   

  1. School of Environment, Tsinghua University, Beijing 100084, China
  • Received:2021-09-17 Revised:2021-11-25 Published:2022-03-15 Online:2022-03-14
  • Contact: Kuo FANG,Kaijun WANG E-mail:547544159@qq.com;kina_fangkuo@163.com;wkj@tsinghua.edu.cn

摘要:

随着全球能源危机的加剧和碳中和的提出,污水资源化和能源回收成为近年来的研究热点。电容去离子(CDI)这一新型电化学技术,以节能、无污染等优势受到广泛关注。流动电极电容去离子(FCDI)技术是在CDI技术的基础上,结合离子交换膜及流动电极的新型电化学吸附方法,在保持节能的同时,能够实现连续运行从而不间断地产水。本文重点关注FCDI技术的原理、设计、操作模式、考察指标及在环境领域中的应用(包括污水处理、能源回收及其他新兴应用),全面概述了这项水处理技术的研究进展和未来前景。此外,还介绍了FCDI系统中常用性能评价指标,以便不同系统、不同条件之间进行对比。最后,提出了FCDI技术在未来全面应用中的主要挑战。

关键词: 吸附, 电化学, 电吸附技术, 流动电极, 电容去离子, 研究进展, 环境应用, 废水

Abstract:

With the intensification of the global energy crisis and the introduction of carbon neutrality, resources and energy recovery have become research hotspots in the field of wastewater treatment. Capacitive deionization (CDI) has attracted widespread attention for its energy-saving and pollution-free superiorities as a new type of electrochemical technology. By combining one pair of ion exchange membranes and flow electrode based on the basis of traditional CDI device, the flow electrode capacitive deionization(FCDI) achieves continuous operation for uninterrupted water production. This review provides a comprehensive overview of the research progress and future prospects of FCDI, focuses on the topics of principles, cell design (including cell architecture, electrode materials, separator options, and FCDI configurations), operation modes (ICC, SCC, OC, and SC) as well as applications in the environmental field (including sewage treatment, energy recovery and other emerging applications). In addition, this article also introduces the commonly used performance metrics of FCDI for comparison between different systems and operating conditions. Finally, the feasibility and main challenges of FCDI technology in future applications are introduced.

Key words: adsorption, electrochemistry, electro-sorption technology, flow-electrode, capacitive deionization, research progress, environmental application, wastewater

中图分类号: 

  • TQ 028.8
30 Cho Y, Yoo C Y, Lee S W, et al. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes[J]. Water Research, 2019, 151: 252-259.
31 Xu Y, Duan F, Li Y P, et al. Enhanced desalination performance in asymmetric flow electrode capacitive deionization with nickel hexacyanoferrate and activated carbon electrodes[J]. Desalination, 2021, 514: 115172.
32 Xu B, Xu X T, Gao H L, et al. Electro-enhanced adsorption of ammonium ions by effective graphene-based electrode in capacitive deionization[J]. Separation and Purification Technology, 2020, 250: 117243.
33 Minh Phuoc N, Anh Thu Tran N, Minh Khoi T, et al. ZIF-67 metal-organic frameworks and CNTs-derived nanoporous carbon structures as novel electrodes for flow-electrode capacitive deionization[J]. Separation and Purification Technology, 2021, 277: 119466.
34 高利军, 白思林, 梁苏岑, 等. ZIF衍生多孔碳纳米纤维用于高效电容去离子的研究[J]. 化工学报, 2020, 71(6): 2760-2767.
Gao L J, Bai S L, Liang S C, et al. ZIF-derived porous carbon nanofibers for high-efficiency capacitive deionization [J]. CIESC Journal, 2020, 71(6): 2760-2767.
35 Kyaw H H, Al-Mashaikhi S M, Myint M T Z, et al. Activated carbon derived from the date palm leaflets as multifunctional electrodes in capacitive deionization system[J]. Chemical Engineering and Processing - Process Intensification, 2021, 161: 108311.
36 Yang S, Park H R, Yoo J, et al. Plate-shaped graphite for improved performance of flow-electrode capacitive deionization[J]. Journal of the Electrochemical Society, 2017, 164(13): E480-E488.
37 Hatzell K B, Hatzell M C, Cook K M, et al. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization[J]. Environmental Science & Technology, 2015, 49(5): 3040-3047.
38 Seredych M, Hulicova-Jurcakova D, Lu G Q, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon, 2008, 46(11): 1475-1488.
39 Elisadiki J, King'ondu C K. Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: a review[J]. Journal of Electroanalytical Chemistry, 2020, 878: 114588.
40 Tu Y H, Liu C F, Wang J A, et al. Construction of an inverted-capacitive deionization system utilizing pseudocapacitive materials[J]. Electrochemistry Communications, 2019, 104: 106486.
41 Kim S, Yoon H, Shin D, et al. Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide[J]. Journal of Colloid and Interface Science, 2017, 506: 644-648.
42 Kim T, Gorski C A, Logan B E. Ammonium removal from domestic wastewater using selective battery electrodes[J]. Environmental Science & Technology Letters, 2018, 5(9): 578-583.
43 Gao R, Bonin L, Arroyo J M C, et al. Separation and recovery of ammonium from industrial wastewater containing methanol using copper hexacyanoferrate (CuHCF) electrodes[J]. Water Research, 2021, 188: 116532.
1 Fang K, Gong H, He W Y, et al. Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization[J]. Chemical Engineering Journal, 2018, 348: 301-309.
2 Huang X, He D, Tang W W, et al. Investigation of pH-dependent phosphate removal from wastewaters by membrane capacitive deionization (MCDI)[J]. Environmental Science: Water Research & Technology, 2017, 3(5): 875-882.
3 Kim D I, Dorji P, Gwak G, et al. Reuse of municipal wastewater via membrane capacitive deionization using ion-selective polymer-coated carbon electrodes in pilot-scale[J]. Chemical Engineering Journal, 2019, 372: 241-250.
4 卞维柏, 潘建明. 电吸附技术及吸附电极材料研究进展[J]. 化工学报, 2021, 72(1): 304-319.
Bian W B, Pan J M. Research progress on electro-sorption technology and fabrication of adsorptive electrode materials[J]. CIESC Journal, 2021, 72(1): 304-319.
5 贾雪茹, 胡程月, 王昭玉, 等. 电容去离子技术在水处理领域的研究进展[J]. 四川化工, 2019, 22(4): 25-28.
Jia X R, Hu C Y, Wang Z Y, et al. Research progress of capacitance deionization technology in the field of water treatment[J]. Sichuan Chemical Industry, 2019, 22(4): 25-28.
6 Blair J W, Murphy G W. Electrochemical demineralization of water with porous electrodes of large surface area[M]//Advances in Chemistry. Washington, D. C.: American Chemical Society, 1960: 206-223.
7 沈彤. 电容去离子脱盐性能增强技术研究[D]. 大连: 大连海事大学, 2020.
Shen T. Improved technology on capacitive deionization for desalination performance[D]. Dalian: Dalian Maritime University, 2020.
8 Zapata-Sierra A, Cascajares M, Alcayde A, et al. Worldwide research trends on desalination[J]. Desalination, 2021, 519: 115305.
9 Jeon S I, Park H R, Yeo J G, et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science, 2013, 6(5): 1471.
10 Wang J, Shi Z L, Fang J, et al. The optimized flow-electrode capacitive deionization (FCDI) performance by ZIF-8 derived nanoporous carbon polyhedron[J]. Separation and Purification Technology, 2022, 281: 119345.
11 Epshtein A, Nir O, Monat L, et al. Treatment of acidic wastewater via fluoride ions removal by SiO2 particles followed by phosphate ions recovery using flow-electrode capacitive deionization[J]. Chemical Engineering Journal, 2020, 400: 125892.
12 Fang K, He W Y, Peng F, et al. Ammonia recovery from concentrated solution by designing novel stacked FCDI cell[J]. Separation and Purification Technology, 2020, 250: 117066.
13 Luo K Y, Niu Q Y, Zhu Y, et al. Desalination behavior and performance of flow-electrode capacitive deionization under various operational modes[J]. Chemical Engineering Journal, 2020, 389: 124051.
14 Bian Y H, Chen X, Lu L, et al. Concurrent nitrogen and phosphorus recovery using flow-electrode capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7844-7850.
15 Ma J X, Ma J J, Zhang C Y, et al. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration[J]. Water Research, 2020, 168: 115186.
16 Shin Y U, Lim J, Boo C, et al. Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): review of process optimization and energy efficiency[J]. Desalination, 2021, 502: 114930.
17 Gendel Y, Rommerskirchen A K E, David O, et al. Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology[J]. Electrochemistry Communications, 2014, 46: 152-156.
18 Zhao X Y, Wei H X, Zhao H C, et al. Electrode materials for capacitive deionization: a review[J]. Journal of Electroanalytical Chemistry, 2020, 873: 114416.
19 Zhang C, Ma J, Wu L, et al. Flow electrode capacitive deionization (FCDI): recent developments, environmental applications, and future perspectives[J]. Environmental Science & Technology, 2021, 55(8): 4243-4267.
20 Park H R, Choi J, Yang S, et al. Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization[J]. RSC Advances, 2016, 6(74): 69720-69727.
21 Porada S, Weingarth D, Hamelers H V M, et al. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation[J]. Journal of Materials Chemistry A, 2014, 2(24): 9313.
22 Fang K, Gong H, He W Y, et al. Revealing the intrinsic differences between static and flow electrode capacitive deionization by introducing semi-flow electrodes[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 362-372.
23 吴阳春, 应迪文, 王亚林, 等. 电容脱盐技术及其在废水处理中的应用[J]. 水处理技术, 2019, 45(8): 1-6, 15.
Wu Y C, Ying D W, Wang Y L, et al. Capacitive desalination technology and its application in wastewater treatment[J]. Technology of Water Treatment, 2019, 45(8): 1-6, 15.
24 Zhang X D, Zuo K C, Zhang X R, et al. Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 243-257.
25 Porada S, Zhao R, van der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442.
26 AlMarzooqi F A, Al Ghaferi A A, Saadat I, et al. Application of capacitive deionisation in water desalination: a review[J]. Desalination, 2014, 342: 3-15.
27 岳智帅. 钠离子插层电极的设计、结构调控及其脱盐性能研究[D]. 银川: 宁夏大学, 2019.
Yue Z S. The investigation on sodium ion intercalation electrode: design structural control and capacitive deionization derformance[D]. Yinchuan: Ningxia University, 2019.
28 孙婧, 陆晓赟, 宋海欧, 等. 具有阴阳离子插入行为的电容去离子电极设计[J]. 化学通报, 2021, 84(5): 402-410.
Sun J, Lu X Y, Song H O, et al. Design of capacitive deionization electrode with insertion of anions and cations[J]. Chemistry, 2021, 84(5): 402-410.
29 Song X, Fang D Z, Huo S L, et al. Exceptional capacitive deionization desalination performance of hollow bowl-like carbon derived from MOFs in brackish water[J]. Separation and Purification Technology, 2021, 278: 119550.
44 Liang P, Sun X L, Bian Y H, et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode[J]. Desalination, 2017, 420: 63-69.
45 Nadakatti S, Tendulkar M, Kadam M. Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology[J]. Desalination, 2011, 268(1/2/3): 182-188.
46 Yasin A S, Yousef Mohamed A, Kim D H, et al. Design of zinc oxide nanoparticles and graphene hydrogel co-incorporated activated carbon for efficient capacitive deionization[J]. Separation and Purification Technology, 2021, 277: 119428.
47 徐斌, 吴文倩, 张毅敏, 等. 石墨烯基电吸附电极材料的研究进展[J]. 水处理技术, 2020, 46(2): 13-18, 24.
Xu B, Wu W Q, Zhang Y M, et al. Research progress of graphene-based electroadsorption electrode materials[J]. Technology of Water Treatment, 2020, 46(2): 13-18, 24.
48 杨顺. 阴阳离子脱嵌纳米复合电极材料的制备及其杂化电容脱盐性能[D]. 银川: 宁夏大学, 2019.
Yang S. Fabrication of anion and cation insertion-deinsertion nano-composites electrode and their hybrid capacitive deionization performance[D]. Yinchuan: Ningxia University, 2019.
49 Akuzum B, Singh P, Eichfeld D A, et al. Percolation characteristics of conductive additives for capacitive flowable (semi-solid) electrodes[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5866-5875.
50 Ma J X, He D, Tang W W, et al. Development of redox-active flow electrodes for high-performance capacitive deionization[J]. Environmental Science & Technology, 2016, 50(24): 13495-13501.
51 Thu Tran N A, Phuoc N M, Yoon H, et al. Improved desalination performance of flow- and fixed-capacitive deionization using redox-active quinone[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(44): 16701-16710.
52 Fang K, Peng F, San E F, et al. The impact of concentration in electrolyte on ammonia removal in flow-electrode capacitive deionization system[J]. Separation and Purification Technology, 2021, 255: 117337.
53 Kong W Q, Wang G, Zhang M, et al. Villiform carbon fiber paper as current collector for capacitive deionization devices with high areal electrosorption capacity[J]. Desalination, 2019, 459: 1-9.
54 Santos C, Lado J J, García-Quismondo E, et al. Interconnected metal oxide CNT fibre hybrid networks for current collector-free asymmetric capacitive deionization[J]. Journal of Materials Chemistry A, 2018, 6(23): 10898-10908.
55 Qu Y, Baumann T F, Santiago J G, et al. Characterization of resistances of a capacitive deionization system[J]. Environmental Science & Technology, 2015, 49(16): 9699-9706.
56 Yang S, Jeon S I, Kim H, et al. Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4174-4180.
57 Rommerskirchen A, Ohs B, Hepp K A, et al. Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes[J]. Journal of Membrane Science, 2018, 546: 188-196.
58 Zhang X D, Yang F, Ma J J, et al. Effective removal and selective capture of copper from salty solution in flow electrode capacitive deionization[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 341-350.
59 Lee K S, Cho Y, Choo K Y, et al. Membrane-spacer assembly for flow-electrode capacitive deionization[J]. Applied Surface Science, 2018, 433: 437-442.
60 王振堃. 离子交换膜: 制备、性能及应用[M]. 北京: 化学工业出版社, 1986.
Wang Z K. Ion Exchange Membrane: Preparation, Performance and Application [M]. Beijing: Chemical Industry Press, 1986.
61 Mao S D, Chen L, Zhang Y, et al. Fractionation of mono- and divalent ions by capacitive deionization with nanofiltration membrane[J]. Journal of Colloid and Interface Science, 2019, 544: 321-328.
62 Nativ P, Lahav O, Gendel Y. Separation of divalent and monovalent ions using flow-electrode capacitive deionization with nanofiltration membranes[J]. Desalination, 2018, 425: 123-129.
63 Cho Y, Lee K S, Yang S, et al. A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization[J]. Energy & Environmental Science, 2017, 10(8): 1746-1750.
64 Choo K Y, Lee K S, Han M H, et al. Study on the electrochemical characteristics of porous ceramic spacers in a capacitive deionization cell using slurry electrodes[J]. Journal of Electroanalytical Chemistry, 2019, 835: 262-272.
65 Jeon S I, Yeo J G, Yang S, et al. Ion storage and energy recovery of a flow-electrode capacitive deionization process[J]. Journal of Materials Chemistry A, 2014, 2(18): 6378.
66 Ma J, Zhang C, Yang F, et al. Carbon black flow electrode enhanced electrochemical desalination using single-cycle operation[J]. Environmental Science & Technology, 2020, 54(2): 1177-1185.
67 Rommerskirchen A, Gendel Y, Wessling M. Single module flow-electrode capacitive deionization for continuous water desalination[J]. Electrochemistry Communications, 2015, 60: 34-37.
68 Ha Y, Lee H, Yoon H, et al. Enhanced salt removal performance of flow electrode capacitive deionization with high cell operational potential[J]. Separation and Purification Technology, 2021, 254: 117500.
69 Tsai S W, Hackl L, Kumar A, et al. Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI)[J]. Desalination, 2021, 497: 114764.
70 Xu L Q, Yu C, Zhang J M, et al. Selective recovery of formic acid from wastewater using an ion-capture electrochemical system integrated with a liquid-membrane chamber[J]. Chemical Engineering Journal, 2021, 425: 131429.
71 Dorji P, Kim D I, Hong S, et al. Pilot-scale membrane capacitive deionisation for effective bromide removal and high water recovery in seawater desalination[J]. Desalination, 2020, 479: 114309.
72 Chung H J, Kim J, Kim D I, et al. Feasibility study of reverse osmosis-flow capacitive deionization (RO-FCDI) for energy-efficient desalination using seawater as the flow-electrode aqueous electrolyte[J]. Desalination, 2020, 479: 114326.
73 Tang K X, Yiacoumi S, Li Y P, et al. Optimal conditions for efficient flow-electrode capacitive deionization[J]. Separation and Purification Technology, 2020, 240: 116626.
74 Ha Y, Jung H B, Lim H, et al. Continuous lithium extraction from aqueous solution using flow-electrode capacitive deionization[J]. Energies, 2019, 12(15): 2913.
75 Wei Q, Hu Y D, Wang J, et al. Low energy consumption flow capacitive deionization with a combination of redox couples and carbon slurry[J]. Carbon, 2020, 170: 487-492.
76 Li D P, Ning X A, Li Y, et al. Nanoarchitectured reduced graphene oxide composite C2N materials as flow electrodes to optimize desalination performance[J]. Environmental Science: Nano, 2020, 7(7): 1980-1989.
77 Tang K X, Zhou K. Water desalination by flow-electrode capacitive deionization in overlimiting current regimes[J]. Environmental Science & Technology, 2020, 54(9): 5853-5863.
78 Zhang J, Tang L, Tang W W, et al. Removal and recovery of phosphorus from low-strength wastewaters by flow-electrode capacitive deionization[J]. Separation and Purification Technology, 2020, 237: 116322.
79 Zhang C Y, Wu L, Ma J X, et al. Integrated flow-electrode capacitive deionization and microfiltration system for continuous and energy-efficient brackish water desalination[J]. Environmental Science & Technology, 2019, 53(22): 13364-13373.
80 Xu L Q, Yu C, Tian S Y, et al. Selective recovery of phosphorus from synthetic urine using flow-electrode capacitive deionization (FCDI)-based technology[J]. ACS ES&T Water, 2021, 1(1): 175-184.
81 Zhang C Y, Wu L, Ma J X, et al. Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters[J]. Water Research, 2020, 173: 115580.
82 Sambrailo D, Ivic J. First land-based plant for RO desalination in Croatia[J]. Desalination, 2000, 132(1/2/3): 329-335.
83 Rico D P, Arias M F C. A reverse osmosis potable water plant at Alicante University: first years of operation[J]. Desalination, 2001, 137(1/2/3): 91-102.
84 Afonso M D, Jaber J O, Mohsen M S. Brackish groundwater treatment by reverse osmosis in Jordan[J]. Desalination, 2004, 164(2): 157-171.
85 Sambrailo D, Ivić J, Krstulović A. Economic evaluation of the first desalination plant in Croatia[J]. Desalination, 2005, 179(1/2/3): 339-344.
86 Belkacem M, Bekhti S, Bensadok K. Groundwater treatment by reverse osmosis[J]. Desalination, 2007, 206(1/2/3): 100-106.
87 Walha K, Amar R B, Firdaous L, et al. Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison[J]. Desalination, 2007, 207(1/2/3): 95-106.
88 Majali F, Ettouney H, Abdel-Jabbar N, et al. Design and operating characteristics of pilot scale reverse osmosis plants[J]. Desalination, 2008, 222(1/2/3): 441-450.
89 Alghoul M A, Poovanaesvaran P, Sopian K, et al. Review of brackish water reverse osmosis (BWRO) system designs[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2661-2667.
90 Aljundi I H. Second-law analysis of a reverse osmosis plant in Jordan[J]. Desalination, 2009, 239(1/2/3): 207-215.
91 Huang X F, Ling J, Xu J C, et al. Advanced treatment of wastewater from an iron and steel enterprise by a constructed wetland/ultrafiltration/reverse osmosis process[J]. Desalination, 2011, 269(1/2/3): 41-49.
92 Shen J J, Richards B S, Schäfer A I. Renewable energy powered membrane technology: case study of St. Dorcas borehole in Tanzania demonstrating fluoride removal via nanofiltration/reverse osmosis[J]. Separation and Purification Technology, 2016, 170: 445-452.
93 Demircioglu M, Kabay N, Kurucaovali I, et al. Demineralization by electrodialysis (ED)—separation performance and cost comparison for monovalent salts[J]. Desalination, 2003, 153(1/2/3): 329-333.
94 Kabay N, İpek Ö, Kahveci H, et al. Effect of salt combination on separation of monovalent and divalent salts by electrodialysis[J]. Desalination, 2006, 198(1/2/3): 84-91.
95 Chakrabarty T, Rajesh A M, Jasti A, et al. Stable ion-exchange membranes for water desalination by electrodialysis[J]. Desalination, 2011, 282: 2-8.
96 Malek P, Ortiz J M, Schulte-Herbrüggen H M A. Decentralized desalination of brackish water using an electrodialysis system directly powered by wind energy[J]. Desalination, 2016, 377: 54-64.
97 Zhao R, Biesheuvel P M, van der Wal A. Energy consumption and constant current operation in membrane capacitive deionization[J]. Energy & Environmental Science, 2012, 5(11): 9520.
98 Zhao R, Biesheuvel P M, Miedema H, et al. Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization[J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 205-210.
99 Omosebi A, Gao X, Landon J, et al. Correction to asymmetric electrode configuration for enhanced membrane capacitive deionization[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9306.
100 Liu Y H, Hsi H C, Li K C, et al. Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4762-4770.
101 Lee J H, Bae W S, Choi J H. Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process[J]. Desalination, 2010, 258(1/2/3): 159-163.
102 Lee J, Kim S, Kim C, et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques[J]. Energy Environ. Sci., 2014, 7(11): 3683-3689.
103 Kim Y J, Choi J H. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane[J]. Separation and Purification Technology, 2010, 71(1): 70-75.
104 Kim S, Lee J, Kim C, et al. Na2FeP2O7 as a novel material for hybrid capacitive deionization[J]. Electrochimica Acta, 2016, 203: 265-271.
105 Kang J, Kim T, Shin H, et al. Direct energy recovery system for membrane capacitive deionization[J]. Desalination, 2016, 398: 144-150.
106 Kang J, Kim T, Jo K, et al. Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization[J]. Desalination, 2014, 352: 52-57.
107 Gao X, Omosebi A, Landon J, et al. Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes[J]. Environmental Science & Technology, 2015, 49(18): 10920-10926.
108 Farmer J C, Fix D V, Mack G V, et al. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J]. Journal of the Electrochemical Society, 1996, 143(1): 159-169.
109 Biesheuvel P M, van Limpt B, van der Wal A. Dynamic adsorption/desorption process model for capacitive deionization[J]. The Journal of Physical Chemistry C, 2009, 113(14): 5636-5640.
110 Zhang B J, Boretti A, Castelletto S. Mxene pseudocapacitive electrode material for capacitive deionization[J]. Chemical Engineering Journal, 2022, 435: 134959.
111 Porada S, Zhang L, Dykstra J E. Energy consumption in membrane capacitive deionization and comparison with reverse osmosis[J]. Desalination, 2020, 488: 114383.
112 Kim T, Dykstra J E, Porada S, et al. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage[J]. Journal of Colloid and Interface Science, 2015, 446: 317-326.
113 Porada S, Weinstein L, Dash R, et al. Water desalination using capacitive deionization with microporous carbon electrodes[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1194-1199.
114 Długołęcki P, van der Wal A. Energy recovery in membrane capacitive deionization[J]. Environmental Science & Technology, 2013, 47(9): 4904-4910.
115 Doornbusch G J, Dykstra J E, Biesheuvel P M, et al. Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(10): 3642-3647.
116 Yang S, Choi J, Yeo J G, et al. Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration[J]. Environmental Science & Technology, 2016, 50(11): 5892-5899.
117 Yang S, Kim H, Jeon S I, et al. Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation[J]. Desalination, 2017, 424: 110-121.
118 He C, Ma J X, Zhang C Y, et al. Short-circuited closed-cycle operation of flow-electrode CDI for brackish water softening[J]. Environmental Science & Technology, 2018, 52(16): 9350-9360.
119 Moreno D, Hatzell M C. Influence of feed-electrode concentration differences in flow-electrode systems for capacitive deionization[J]. Industrial & Engineering Chemistry Research, 2018, 57(26): 8802-8809.
120 Tang K X, Yiacoumi S, Li Y P, et al. Enhanced water desalination by increasing the electroconductivity of carbon powders for high-performance flow-electrode capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1085-1094.
121 Yang F, Ma J J, Zhang X D, et al. Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance[J]. Water Research, 2019, 164: 114904.
122 王森, 易佩, 袁娇娇. CDI及其在去除水中重金属离子方面的研究进展[J]. 应用化工, 2021, 50(9): 2562-2566.
Wang S, Yi P, Yuan J J. CDI and its progress in the removal of heavy metal ions in water[J]. Applied Chemical Industry, 2021, 50(9): 2562-2566.
123 Zhang C, Wang M, Xiao W, et al. Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI)[J]. Water Research, 2021, 189: 116653.
124 莫剑雄. 电容吸附去离子方法的研究[J]. 水处理技术, 2007, 33(8): 20-22, 33.
Mo J X. Researches on de-ionizing method by capacitive adsorption[J]. Technology of Water Treatment, 2007, 33(8): 20-22, 33.
125 Tan C, He C, Fletcher J, et al. Energy recovery in pilot scale membrane CDI treatment of brackish waters[J]. Water Research, 2020, 168: 115146.
126 石胜启. 基于石墨带电极的电容法脱盐组件串联装置实验研究[D]. 天津: 天津大学, 2012.
Shi S Q. Experimental studies on series-wound CDI units with graphite ribbon electrode[D]. Tianjin: Tianjin University, 2012.
127 莫恒亮, 唐阳, 陈咏梅, 等. 流动电极电吸附(FCDI)与电渗析(ED)耦合实现连续脱盐技术研究[J]. 现代化工, 2019, 39(5): 91-95.
Mo H L, Tang Y, Chen Y M, et al. Technical research in continuous desalting by coupling flow capacitive deionization and electrodialysis[J]. Modern Chemical Industry, 2019, 39(5): 91-95.
128 李敏. 电容去离子强化超滤耦合系统的污水再生特性与机制研究[D]. 北京: 北京林业大学, 2020.
Li M. Characteristics and mechanism of wastewater reclamation of a capacitive deionization enhanced ultrafiltration system[D]. Beijing: Beijing Forestry University, 2020.
129 张须媚, 王霜, 高娟娟, 等. 电容去离子技术在水处理中的应用[J]. 水处理技术, 2018, 44(9): 16-21, 31.
Zhang X M, Wang S, Gao J J, et al. Application of capacitive deionization technology in water treatment[J]. Technology of Water Treatment, 2018, 44(9): 16-21, 31.
130 Xu L Q, Yu C, Mao Y F, et al. Can flow-electrode capacitive deionization become a new in situ soil remediation technology for heavy metal removal? [J]. Journal of Hazardous Materials, 2021, 402: 123568.
131 蒲海, 吴敏, 熊小刚. 聚苯胺-铁氰化铜复合材料的制备与铵离子的选择性回收研究[J]. 塑料科技, 2020, 48(11): 54-58.
Pu H, Wu M, Xiong X G. Study on synthesis and selective recovery of ammonia ion of polyaniline-copper hexacyanoferrate composite[J]. Plastics Science and Technology, 2020, 48(11): 54-58.
[1] 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APETS改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402.
[2] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[3] 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206.
[4] 刘轩, 苏银皎, 滕阳, 张锴, 王鹏程, 李丽锋, 李圳. 超低排放燃煤机组硒的迁移转化及飞灰对其富集特性[J]. 化工学报, 2022, 73(2): 923-932.
[5] 居涛, 李国辉, 耿凤霞. 一步法合成二维Ti3C2及其电化学性能研究[J]. 化工学报, 2022, 73(2): 951-959.
[6] 王洒, 温怡静, 郭丹煜, 周欣, 李忠. 锆基MOF次级结构单元调控及轻烃吸附分离性能增强[J]. 化工学报, 2022, 73(2): 730-738.
[7] 张殷豪, 詹菲, 李城序, 于畅, 邱介山. 铵钒青铜基浓差流动电池的盐差发电性能研究[J]. 化工学报, 2022, 73(2): 857-864.
[8] 付鹏波,田金乙,吕文杰,黄渊,刘毅,卢浩,杨强,修光利,汪华林. 物理法水处理技术[J]. 化工学报, 2022, 73(1): 59-72.
[9] 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321.
[10] 郑哲楠, 高翔, 罗英武, 黄杰. 紫外光交联法制备全固态聚合物电解质[J]. 化工学报, 2022, 73(1): 441-450.
[11] 郑哲楠,高翔,罗英武,黄杰. 紫外光交联法制备全固态聚合物电解质[J]. 化工学报, 2022, 73(1): 441-450.
[12] 刘恒源, 王海辉, 徐建鸿. 电催化氮还原合成氨电化学系统研究进展[J]. 化工学报, 2022, 73(1): 32-45.
[13] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[14] 吴俊晔, 葛天舒, 吴宣楠, 代彦军, 王如竹. 基于吸附剂/木浆纤维纸耦合材料的空气净化[J]. 化工学报, 2021, 72(S1): 520-529.
[15] 罗伟莉, 王雯雯, 潘权稳, 葛天舒, 王如竹. 基于活性碳纤维毡复合吸附剂的储热性能[J]. 化工学报, 2021, 72(S1): 554-559.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[2] 夏春明, 郑建荣, J.Howell. 基于非负频谱分解的厂级多重振荡源的分离研究[J]. CIESC Journal, 2007, 15(3): 353 -360 .
[3] 刘先桥, 官月平, 邢建民, 马志亚, 刘会洲. 带环氧基的超顺磁性高分子微球的制备及其性能表征[J]. CIESC Journal, 2003, 11(6): 731 -735 .
[4] 罗坤, 郑友取, 樊建人, 岑可法. 三维混合层中大涡结构与扩散颗粒的相互作用[J]. CIESC Journal, 2003, 11(4): 377 -382 .
[5] 刘伯潭, 刘春江. 精馏塔板液相流场三维模拟[J]. CIESC Journal, 2002, 10(5): 517 -521 .
[6] 张鹏, 刘春江, 王利东, 唐忠利, 余国琮. 规整填料在高压精馏条件下的传质性能[J]. CIESC Journal, 2002, 10(6): 635 -638 .
[7] 马红武, 赵学明, 郭晓峰. 通过通量平衡分析计算经验和真实维持系数[J]. CIESC Journal, 2002, 10(1): 89 -92 .
[8] 杨根生, 施介华, 李景华, 王普, 姚善泾. 十二烷基磺酸钠/异辛烷/正构醇/水微乳状液的相行为及其结构转变的研究[J]. CIESC Journal, 2002, 10(6): 670 -672 .
[9] 徐志南, 岑沛霖. 大肠杆菌中同时表达的可溶性和不溶性人α-干扰素-2b的初步分离研究[J]. CIESC Journal, 2002, 10(6): 686 -689 .
[10] 夏金兰, 聂珍嫒, J. M. Levert. 极大螺旋微藻(分节螺旋属)在一六面体光合生物反应器中生物合成13C标识氨基酸和糖[J]. CIESC Journal, 2002, 10(5): 592 -596 .