化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1457-1464.DOI: 10.11949/0438-1157.20201791
收稿日期:
2020-12-10
修回日期:
2020-12-17
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
张磊
作者简介:
仪桐辛(1996—),男,硕士研究生,基金资助:
YI Tongxin(),ZHANG Lei(),DU Jian
Received:
2020-12-10
Revised:
2020-12-17
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHANG Lei
摘要:
工质对是吸收式热泵工作时能量转换的介质,直接影响整个系统的性能。然而现有工质对的研究多集中于对特定体系的物性进行实验及拟合或对纯净物工质的设计和预测,鲜有未知工质对设计和预测的研究。提出基于计算机辅助分子设计实现工质对和吸收式热泵系统同步建模和优化的方法,建立了以性能系数(coefficient of performance)最大为目标的MINLP (mixed-integer nonlinear programming)模型,可以设计得到新工质对并对其性能进行预测。针对现有基团贡献法对工质比热容预测误差较大的问题,对12个工质常用基团回归了比热容的基团贡献值并应用于模型中。通过对建立的优化模型进行求解,获得了5组可行工质对。最后,将设计得到的工质对与文献数据进行对比,结果验证了提出方法的可行性与有效性。
中图分类号:
仪桐辛, 张磊, 都健. 吸收式热泵循环的新型有机工质对计算机辅助分子设计[J]. 化工学报, 2021, 72(3): 1457-1464.
YI Tongxin, ZHANG Lei, DU Jian. Computer-aided molecular design of new organic working pairs in absorption heat pump cycle[J]. CIESC Journal, 2021, 72(3): 1457-1464.
制冷剂 | 吸收剂 |
---|---|
凝固点较低,避免结晶 | 蒸气压较低,沸点较高 |
冷凝压力不太高 | 凝固点尽量低,避免结晶 |
蒸发潜热大,减小循环量 | 比热容较小 |
热导率大 | 黏度较小 |
黏度较小 | 对制冷剂溶解度高 |
环境友好,毒性小 | 具有化学稳定性 |
价格便宜容易制取 | 环境友好,毒性小 |
价格便宜易制取 |
表1 吸收式热泵工质对评价标准
Table 1 The evaluation indexes of the working pairs
制冷剂 | 吸收剂 |
---|---|
凝固点较低,避免结晶 | 蒸气压较低,沸点较高 |
冷凝压力不太高 | 凝固点尽量低,避免结晶 |
蒸发潜热大,减小循环量 | 比热容较小 |
热导率大 | 黏度较小 |
黏度较小 | 对制冷剂溶解度高 |
环境友好,毒性小 | 具有化学稳定性 |
价格便宜容易制取 | 环境友好,毒性小 |
价格便宜易制取 |
制冷剂基团 | 吸收剂基团 | ||
---|---|---|---|
CH3 | C | CH3 | OH |
CH2 | OH | CH2 | NHCO |
CH | Cl | CH | CH2O |
F | C | CO |
表2 吸收式热泵工质对基团约束
Table 2 Group composition limit of the working pairs
制冷剂基团 | 吸收剂基团 | ||
---|---|---|---|
CH3 | C | CH3 | OH |
CH2 | OH | CH2 | NHCO |
CH | Cl | CH | CH2O |
F | C | CO |
工质性质 | 约束范围 |
---|---|
沸点Tb/K | 180<Tb<500 |
临界温度Tc/K | 260<Tc<800 |
毒性LC50FM/(mol·L-1) | -ln LC50FM<5 |
黏度η/(mPa·s) | η<2.5 |
表3 吸收式热泵工质对物性约束
Table 3 Property constraints of the working pairs
工质性质 | 约束范围 |
---|---|
沸点Tb/K | 180<Tb<500 |
临界温度Tc/K | 260<Tc<800 |
毒性LC50FM/(mol·L-1) | -ln LC50FM<5 |
黏度η/(mPa·s) | η<2.5 |
基团 | CB (CpB0=1.423545778) | CA (CpA0=1.099867009) |
---|---|---|
CH3 | 0.254540795 | 0.554906503 |
CH2 | -0.065130771 | 0.063773555 |
CH | -0.010249366 | -0.259999099 |
C | -0.365985429 | -0.678716353 |
OH | 0.563953815 | 0.530841876 |
F | 0.024692125 | 0.175440326 |
表4 方程式(2)的回归参数
Table 4 The parameters of Eq. (2)
基团 | CB (CpB0=1.423545778) | CA (CpA0=1.099867009) |
---|---|---|
CH3 | 0.254540795 | 0.554906503 |
CH2 | -0.065130771 | 0.063773555 |
CH | -0.010249366 | -0.259999099 |
C | -0.365985429 | -0.678716353 |
OH | 0.563953815 | 0.530841876 |
F | 0.024692125 | 0.175440326 |
指标 | 定义式 | 意义 |
---|---|---|
ΔT | ΔT = Th – Tm | AHT升温能力 |
COP | COP = QE / (QA + QG) | 余热利用水平 |
f | f = m1 / m2 = ω1 / ω2 – ω1 | 稀溶液流量与冷剂流量比 |
表5 AHT评价常用指标
Table5 The common evaluation indexes of the AHT
指标 | 定义式 | 意义 |
---|---|---|
ΔT | ΔT = Th – Tm | AHT升温能力 |
COP | COP = QE / (QA + QG) | 余热利用水平 |
f | f = m1 / m2 = ω1 / ω2 – ω1 | 稀溶液流量与冷剂流量比 |
工质 | 熔点/K | 沸点/K | 临界温度/K | 蒸发焓/(J·mol·K-1) | 黏度/(mPa·s) |
---|---|---|---|---|---|
制冷剂 | |||||
CH2(OH)CF3 | 256.25 | 399.15 | 582.94 | 41.25 | 2.32 |
CF3CH(OH)CF3 | 266.71 | 409.36 | 580.77 | 44.35 | 0.8 |
CH3C(OH)(CH2CF3)CH2CF3 | 254.51 | 407.23 | 590.57 | 46.72 | 1.03 |
CH3CH(OH)CH3 | 263.18 | 404.36 | 587.96 | 49.01 | 1.87 |
CF3CH2CH(OH)CH2CF3 | 261.52 | 412.28 | 595.38 | 49.11 | 0.92 |
吸收剂 | |||||
CH3(OCH2CH2O)4CH3 | 423.14 | 609.68 | 0.81 | ||
CH3(OCH2CH2O)2CH3 | 446.07 | 639.98 | 0.62 | ||
HOCH2(NHCO)CH(OH)CH3 | 427.75 | 621.28 | 0.84 |
表6 工质设计结果
Table 6 Results of working fluid design
工质 | 熔点/K | 沸点/K | 临界温度/K | 蒸发焓/(J·mol·K-1) | 黏度/(mPa·s) |
---|---|---|---|---|---|
制冷剂 | |||||
CH2(OH)CF3 | 256.25 | 399.15 | 582.94 | 41.25 | 2.32 |
CF3CH(OH)CF3 | 266.71 | 409.36 | 580.77 | 44.35 | 0.8 |
CH3C(OH)(CH2CF3)CH2CF3 | 254.51 | 407.23 | 590.57 | 46.72 | 1.03 |
CH3CH(OH)CH3 | 263.18 | 404.36 | 587.96 | 49.01 | 1.87 |
CF3CH2CH(OH)CH2CF3 | 261.52 | 412.28 | 595.38 | 49.11 | 0.92 |
吸收剂 | |||||
CH3(OCH2CH2O)4CH3 | 423.14 | 609.68 | 0.81 | ||
CH3(OCH2CH2O)2CH3 | 446.07 | 639.98 | 0.62 | ||
HOCH2(NHCO)CH(OH)CH3 | 427.75 | 621.28 | 0.84 |
工质对 | mH/(kg·h-1) | mL/(kg·h-1) | ω1 | ω2 | Ta/℃ | COP |
---|---|---|---|---|---|---|
CH3C(OH)(CH2CF3)CH2CF3-TEGDME | 54.2 | 108.6 | 0.456 | 0.963 | 132 | 0.46 |
CF3CH2CH(OH)CH2CF3-TEGDME | 43.6 | 172.4 | 0.386 | 0.909 | 148 | 0.39 |
表7 工质对设计结果
Table 7 The design results of the working pairs
工质对 | mH/(kg·h-1) | mL/(kg·h-1) | ω1 | ω2 | Ta/℃ | COP |
---|---|---|---|---|---|---|
CH3C(OH)(CH2CF3)CH2CF3-TEGDME | 54.2 | 108.6 | 0.456 | 0.963 | 132 | 0.46 |
CF3CH2CH(OH)CH2CF3-TEGDME | 43.6 | 172.4 | 0.386 | 0.909 | 148 | 0.39 |
1 | Ali A H H, Schwerdt P. Characteristics of the membrane utilized in a compact absorber for lithium bromide-water absorption chillers[J]. International Journal of Refrigeration, 2009, 32(8): 1886-1896. |
2 | Wang R Z, Yu X, Ge T S, et al. The present and future of residential refrigeration, power generation and energy storage[J]. Applied Thermal Engineering, 2013, 53(2): 256-270. |
3 | Iyoki S, Tanaka K, Uemura T. Theoretical performance analysis of absorption refrigerating machine, absorption heat pump and absorption heat transformer using alcohol as working medium[J]. International Journal of Refrigeration, 1994, 17(3): 180-190. |
4 | Donnellan P, Cronin K, Byrne E. Recycling waste heat energy using vapour absorption heat transformers: a review[J]. Renewable&Sustainable Energy Reviews, 2015, 42: 1290-1304. |
5 | Park Y, Kim J S, Lee H, et al. Density, vapor pressure, solubility, and viscosity for water + lithium bromide + lithium nitrate + 1, 3-propanediol[J]. Journal of Chemical & Engineering Data, 1997, 42(1): 145-148. |
6 | Coronas A, Vallés M, Chaudhari S K, et al. Absorption heat pump with the TFE-TEGDME and TFE-H2O-TEGDME systems[J]. Applied Thermal Engineering, 1996, 16(4): 335-345. |
7 | Papadopoulos A I, Stijepovic M, Linke P. On the systematic design and selection of optimal working fluids for organic Rankine cycles[J]. Applied Thermal Engineering, 2010, 30(6/7): 760-769. |
8 | Louaer I, Meniai A H, Larkeche O, et al. Computer-aided design and test of new refrigerants for anabsorption cycle using group contribution methods[J]. Desalination, 2007, 206(1/2/3): 620-632. |
9 | Dong Y, Zhu R, Guo Y, et al. A united chemical thermodynamic model: COSMO-UNIFAC[J]. Industrial & Engineering Chemistry Research, 2018, 57(46): 15954-15958. |
10 | Khetib Y, Larkeche O, Meniai A H, et al. Group contribution concept for computer-aided design of working fluids for refrigeration machines[J]. Chemical Engineering & Technology, 2013, 36(11): 1924-1934. |
11 | Liu Q, Zhang L, Liu L, et al. OptCAMD: an optimization-based framework and tool for molecular and mixture product design[J]. Computers and Chemical Engineering, 2019, 124: 285-301. |
12 | Lemmon E W, Huber M L, Mcinlden M O. NIST Standard Reference Database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version9.1[DB]. Gaithersburg: National Institute of Standards and Technology, 2013. |
13 | Hukkerikar A S. Development of pure component property models for chemical product-process design and analysis[D]. Denmark: Technical University of Denmark, 2013. |
14 | Mirza N R, Nicholas N J, Wu Y, et al. Estimation of normal boiling temperatures, critical properties, and acentric factors of deep eutectic solvents[J]. Journal of Chemical & Engineering Data, 2015, 60(6): 1844-1854. |
15 | Azadfar R, Shaabanzadeh M, Hashemi-Moghaddam H, et al. A new simple model to calculate the heat capacity of pure ionic liquids[J]. Physical Chemistry Research, 2020, 8(1): 139-154. |
16 | Oster K, Jacquemin J, Hardacre C, et al. Further development of the predictive models for physical properties of pure ionic liquids: thermal conductivity and heat capacity[J]. The Journal of Chemical Thermodynamics, 2018, 118: 1-15. |
17 | Chen W, Hsieh C M, Yang L, et al. A critical evaluation on the performance of COSMO-SAC models for vapor-liquid and liquid-liquid equilibrium predictions based on different quantum chemical calculations [J]. Industrial & Engineering Chemistry Research, 2016: 55(34): 9312-9322. |
18 | 刘国强. 溴化锂第二类吸收式热泵的设计与仿真研究[D]. 天津: 天津大学, 2007. |
Liu G Q. Design and simulation of the LiBr/H2O absorption heat transformer [D]. Tianjin: Tianjin University, 2007. | |
19 | 赵宗昌, 阎雪峰, 沙庆云, 等. 第二类LiBr-H2O吸收式热泵热力循环分析[J]. 节能技术, 2002, 20(6): 5-9. |
Zhang Z C, Yan X F, Sha Q Y, et al. The simulation of thermodynamic cycle for the absorption heat transformer using lithium bromide and water as the working fluids[J]. Energy Conservation Technology, 2002, 20(6): 5-9. | |
20 | Karunanithi A T, Achenie L E K, Gani R. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures [J]. Industrial& Engineering Chemistry Research, 2005, 44(13): 4785-4797. |
21 | Wang S, Sandler S I, Chen C C. Refinement of COSMO-SAC and the applications[J]. Industrial & Engineering Chemistry Research, 2007, 46(22): 7275-7288. |
22 | Hsieh C M, Sandler S I, Lin S. Improvements of COSMO-SAC for vapor–liquid and liquid-liquid equilibrium predictions[J]. Fluid Phase Equilibria, 2010, 297(1): 90-97. |
23 | Long Z, Luo Y, Li H, et al. Performance analysis of a diffusion absorption refrigeration cycle working with TFE-TEGDME mixture[J]. Energy & Buildings, 2013, 58: 86-92. |
24 | Boer D, Valles M, Coronas A. Performance of double effect absorption compression cycles for air-conditioning using methanol-TEGDME and TFE-TEGDME systems as working pairs[J]. International Journal of Refrigeration, 1998, 21(7): 542-555. |
25 | 刘锋. 第二类吸收式热泵品位提升机理与系统集成研究[D]. 北京: 中国科学院工程热物理研究所, 2017. |
Liu F. Study on mechanism of energy level upgrading in absorption heat transformer and system integration[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2017. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 陈程, 陈鑫, 徐凤, 吴斌, 李元媛, 陆规. 燃煤机组脱硫废水零排放物料-能-水耦合机制及优化[J]. 化工学报, 2021, 72(11): 5800-5809. |
[3] | 吴伟, 石文星, 王宝龙, 李先庭. 不同增压方式对空气源吸收式热泵性能影响的模拟分析[J]. 化工学报, 2013, 64(7): 2360-2368. |
[4] | 贾红书1,付 林1,张世钢2. 开式吸收式热泵及在烟气余热回收中的应用[J]. 化工进展, 2013, 32(12): 2805-2812. |
[5] | 杨振生, 赵先兴, 李春利, 方静. 结合图论和基团贡献法的非均相共沸精馏挟带剂设计[J]. 化工学报, 2012, 63(10): 3158-3164. |
[6] | 肖丰, 都健, 陈理, 刘琳琳, 姚平经. 柔性换热器网络综合与清洗时序安排同步优化 [J]. 化工学报, 2009, 60(10): 2529-2535. |
[7] | 张学岗,张军保,宋 静,宋海华. 基于MGASA的计算机辅助分子设计 [J]. CIESC Journal, 2008, 27(12): 2019-. |
[8] | 都健; 高志辉 ;陈理; 姚平经. 采用浓度差同步优化的质量交换网络设计 [J]. CIESC Journal, 2007, 58(7): 1768-1775. |
[9] | 李志红,华贲. 无分流换热网络的弹性设计(Ⅰ)基于温度波动情形 [J]. CIESC Journal, 1999, 50(3): 317-325. |
[10] | 钟理,谭盈科. 水/二甘醇Ⅱ型吸收式热泵性能的模拟 [J]. CIESC Journal, 1992, 43(3): 353-359. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||