化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1447-1456.DOI: 10.11949/0438-1157.20201878
收稿日期:
2020-12-20
修回日期:
2020-12-27
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
刘琳琳
作者简介:
于雪菲(1997—),女,硕士研究生,基金资助:
YU Xuefei(),ZHANG Shuai,LIU Linlin(
),DU Jian
Received:
2020-12-20
Revised:
2020-12-27
Online:
2021-03-05
Published:
2021-03-05
Contact:
LIU Linlin
摘要:
由于全球碳排放量持续增加所引发的环境问题日益严重,发展低碳技术迫在眉睫。在化石燃料发电厂的尾端加入碳捕集装置能够有效减少燃煤电厂的碳足迹,达成减排指标。然而,碳捕集装置的高设备成本以及运行所附带的效率惩罚和经济惩罚阻碍了其与电厂装置的集成与部署。为了在满足碳减排量的同时有效提高电厂和碳捕集装置的总体效益,建立了一个基于数学规划的系统优化设计与调度方法,将发电厂与一个增加烟气旁路和溶剂储罐的碳捕集装置进行集成,并在电厂蒸汽动力循环部分引入分级透平,旨在考虑电价波动的情况下,充分利用碳捕集装置的操作灵活性与蒸汽透平分级做功的优势,对集成系统进行调度优化。最后,通过算例验证了模型的可靠性与有效性,分析归纳了电厂与碳捕集装置协同调度的主要特性与规律。
中图分类号:
于雪菲, 张帅, 刘琳琳, 都健. 电厂和碳捕集装置同步集成与调度优化研究[J]. 化工学报, 2021, 72(3): 1447-1456.
YU Xuefei, ZHANG Shuai, LIU Linlin, DU Jian. Simultaneous integration and scheduling of power plant and carbon capture device[J]. CIESC Journal, 2021, 72(3): 1447-1456.
参数 | 含义与单位 | 数值 |
---|---|---|
CO2捕集相关运输和储存成本/(USD·t-1) | 7 | |
eG0 | 额定负荷下工作时发电厂的CO2排放强度/ (t·(MW·h)-1) | 0.76 |
gmin | 最小总发电量/MW | 300 |
LHV | 燃料能提供的最低热值/(kJ·kg-1) | 29270 |
L0,total | 初始状态下贫液罐内溶剂的体积/m3 | 7300 |
qstr | 解吸单位质量CO2所需能量/(kJ·t-1) | 3.84×106 |
R0,total | 初始状态下富液罐内溶剂的体积/m3 | 7300 |
额定负荷下工作时发电厂的产电效率 | 0.44 | |
发电厂与经销商的合同上电量定价/(USD·(MW·h)-1) | 51.7 | |
碳排放总量交易市场中碳信用价格/(USD·t-1) | 12.3 | |
发电厂一天内的额定碳排放量/t | 4373 | |
cQ | 燃料价格/(USD·kg-1) | 0.095 |
表1 部分重要设计参数
Table 1 Part of important design parameters
参数 | 含义与单位 | 数值 |
---|---|---|
CO2捕集相关运输和储存成本/(USD·t-1) | 7 | |
eG0 | 额定负荷下工作时发电厂的CO2排放强度/ (t·(MW·h)-1) | 0.76 |
gmin | 最小总发电量/MW | 300 |
LHV | 燃料能提供的最低热值/(kJ·kg-1) | 29270 |
L0,total | 初始状态下贫液罐内溶剂的体积/m3 | 7300 |
qstr | 解吸单位质量CO2所需能量/(kJ·t-1) | 3.84×106 |
R0,total | 初始状态下富液罐内溶剂的体积/m3 | 7300 |
额定负荷下工作时发电厂的产电效率 | 0.44 | |
发电厂与经销商的合同上电量定价/(USD·(MW·h)-1) | 51.7 | |
碳排放总量交易市场中碳信用价格/(USD·t-1) | 12.3 | |
发电厂一天内的额定碳排放量/t | 4373 | |
cQ | 燃料价格/(USD·kg-1) | 0.095 |
相关项目 | 结果/(USD·d-1) | |
---|---|---|
传统电厂 | 优化后电厂 | |
固定电量合同收益 | 496320 | 496320 |
电力市场收益 | 107855 | 146333 |
产电费用 | 387595 | 370005 |
碳市场收益 | 16058 | 12639 |
CO2运输和储存费用 | 45044 | 35351 |
日利润 | 187593 | 249936 |
表2 计算结果
Table 2 Calculation results
相关项目 | 结果/(USD·d-1) | |
---|---|---|
传统电厂 | 优化后电厂 | |
固定电量合同收益 | 496320 | 496320 |
电力市场收益 | 107855 | 146333 |
产电费用 | 387595 | 370005 |
碳市场收益 | 16058 | 12639 |
CO2运输和储存费用 | 45044 | 35351 |
日利润 | 187593 | 249936 |
1 | International Energy Agency. World Energy Outlook 2014[R]. 2014. |
2 | Wu X, Wang M H, Lee K Y. Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control[J]. Energy, 2020, 206: 118105. |
3 | Wu Y, Chen X P, Ma J L, et al. System integration optimization for coal-fired power plant with CO2 capture by Na2CO3 dry sorbents[J]. Energy, 2020, 211: 118554. |
4 | Liu M, Zhang X W, Yang K X, et al. Comparison and sensitivity analysis of the efficiency enhancements of coalfired power plants integrated with supercritical CO2 Brayton cycle and steam Rankine cycle[J]. Energy Conversion and Management, 2019, 198: 111918. |
5 | Zhang S, Zhuang Y, Liu L L, et al. Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109280. |
6 | Zhang S, Liu L, Zhang L, et al. An optimization model for carbon capture utilization and storage supply chain: a case study in Northeastern China [J]. Applied Energy, 2018, 231: 194-206. |
7 | Mechleri E, Lawal A, Ramos A, et al. Process control strategies for flexible operation of post-combustion CO2 capture plants[J]. International Journal of Greenhouse Gas Control, 2017, 57: 14-25. |
8 | Zhang X L, Song P P, Jiang L. Performance evaluation of an integrated redesigned coal fired power plant with CO2 capture by calcium looping process[J]. Applied Thermal Engineering, 2020, 170: 115027. |
9 | Wang T L, Hovland J, Jens K J. Amine reclaiming technologies in post-combustion carbon dioxide capture[J]. Journal of Environmental Sciences, 2015, 27: 276-289. |
10 | Zantye M S, Arora A, Faruque Hasan M M. Operational power plant scheduling with flexible carbon capture: a multistage stochastic optimization approach[J]. Computers & Chemical Engineering, 2019, 130: 106544. |
11 | Tan R R, Ng D K S, Foo D C Y. Pinch analysis approach to carbon-constrained planning for sustainable power generation[J]. Journal of Clean Production, 2009, 17: 940-944. |
12 | Pękala Ł M, Tan R R, Foo D C Y, et al. Optimal energy planning models with carbon footprint constraints[J]. Applied Energy, 2010, 87: 1903-1910. |
13 | Lee J Y. A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector[J]. Applied Energy, 2017, 198: 12-20. |
14 | Abdilahi A M, Mustafa M W, Abujarad S Y, et al. Harnessing flexibility potential of flexible carbon capture power plants for future low carbon power systems: review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3101-3110. |
15 | van der Wijk P C, Brouwer A S, van den Broek M, et al. Benefits of coal-fired power generation with flexible CCS in a future northwest European power system with large scale wind power[J]. International Journal of Greenhouse Gas Control, 2014, 28: 216-233. |
16 | Wang J Y, Sun T W, Zeng X L, et al. Feasibility of solar-assisted CO2 capture power plant with flexible operation: a case study in China[J]. Applied Thermal Engineering, 2021, 182, 116096. |
17 | Chen Q, Kang C, Xia Q, et al. Optimal flexible operation of a CO2 capture power plant in a combined energy and carbon emission market[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1602-1609. |
18 | Lawal A, Wang M, Stephenson P. Investigating the dynamic response of CO2 chemical absorption process in enhanced-O2 coal power plant with post-combustion CO2 capture[J]. Energy Procedia, 2011, 4: 1035-1042. |
19 | He Z, Ricardez-Sandoval L A. Dynamic modelling of a commercial-scale CO2 capture plant integrated with a natural gas combined cycle (NGCC) power plant[J]. International Journal of Greenhouse Gas Control, 2016, 55: 23-35. |
20 | Haines M R, Davison J E. Designing carbon capture power plants to assist in meeting peak power demand[J]. Energy Procedia, 2009, 1: 1457-1464. |
21 | Cohen S M, Rochelle G T, Webber M E. Optimal operation of flexible post-combustion CO2 capture in response to volatile electricity prices[J]. Energy Procedia, 2011, 4: 2604-2611. |
22 | van Peteghem T, Delarue E. Opportunities for applying solvent storage to power plants with post-combustion carbon capture[J]. International Journal of Greenhouse Gas Control, 2014, 21: 203-213. |
23 | Mac Dowell N, Shah N. The multi-period optimisation of an amine-based CO2 capture process integrated with a super-critical coal-fired power station for flexible operation[J]. Computers & Chemical Engineering, 2015, 74: 169-183. |
24 | Mechleri E, Fennell P S, Mac Dowell N. Optimisation and evaluation of flexible operation strategies for coal- and gas-CCS power stations with a multi-period design approach[J]. International Journal of Greenhouse Gas Control, 2017, 59: 24-39. |
25 | Kirschen D S, Strbac G. Fundamentals of Power System Economics[M]. New York: John Wiley & Sons, Ltd, 2004. |
26 | Garces L P, Conejo A J. Weekly self-scheduling, forward contracting, and offering strategy for a producer[J]. IEEE Transactions on Power Systems, 2010, 25(2): 657-666. |
27 | Vlachou A, The European Union's emissions trading system[J]. Cambridge Journal of Economics, 2014, 38(1): 127-152. |
28 | Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable & Sustainable Energy Reviews, 2014, 39(39): 426-443. |
29 | Aguilar O, Perry S, Kim J K, et al. Design and optimization of flexible utility systems subject to variable conditions(Part 1): Modelling framework[J]. Chemical Engineering Research and Design, 2007, 85(9): 1136-1148. |
30 | Reddy V S, Kaushik S C, Tyagi S K. Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant[J]. Clean Technologies and Environmental Policy, 2014, 16(3): 489-499. |
31 | 王营营. 基于碳捕集的燃煤发电机组热力系统性能研究[D]. 北京: 华北电力大学, 2015. |
Wang Y Y. Thermodynamic performance analysis of the coal-fired power plant with CO2 capture[D].Beijing: North China Electric Power University, 2015. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[6] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[9] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[10] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[11] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[12] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[13] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 823
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 512
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||