化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2529-2542.DOI: 10.11949/0438-1157.20220135
收稿日期:
2022-01-25
修回日期:
2022-03-22
出版日期:
2022-06-05
发布日期:
2022-06-30
通讯作者:
练成,刘洪来
作者简介:
黄盼(1997—),男,博士研究生,基金资助:
Pan HUANG1(),Cheng LIAN1,2(),Honglai LIU1,2()
Received:
2022-01-25
Revised:
2022-03-22
Online:
2022-06-05
Published:
2022-06-30
Contact:
Cheng LIAN,Honglai LIU
摘要:
电极中的离子-电子传递和传热显著影响着电化学储能性能。深入研究多孔电极中的热-质传递现象这一典型的介尺度问题,对高性能电化学储能器件的设计具有重要意义。采用一种基于改进的状态更新的随机重建方法和动态退火系数相结合的模拟退火算法,将图像分割后的二维SEM图重构为真实的三维多孔电极。通过重构多孔电极和PNP方程与傅里叶定律,建立真实多孔电极中的离子传递和电极导热模型。结果表明,当充电时间为0.1个平板充电弛豫时间时,离子主要吸附在多孔电极骨架相与体相的接触面上,且离子倾向于从截面边缘往中心迁移。由于实际的导热距离远小于多孔电极厚度,多孔电极中的热弛豫时间远小于平板的热弛豫时间。
中图分类号:
黄盼, 练成, 刘洪来. 基于模拟退火算法的真实多孔电极中热-质传递的研究[J]. 化工学报, 2022, 73(6): 2529-2542.
Pan HUANG, Cheng LIAN, Honglai LIU. Heat-mass transfer in real porous electrode based on simulated annealing algorithm[J]. CIESC Journal, 2022, 73(6): 2529-2542.
Eth | ΔEth | Ncon | Niter |
---|---|---|---|
1×10-6 | 1×10-8 | 500 | 1×106 |
表1 模拟退火算法退出迭代的参数设置
Table 1 Parameter setting of simulated annealing algorithm to exit the iteration
Eth | ΔEth | Ncon | Niter |
---|---|---|---|
1×10-6 | 1×10-8 | 500 | 1×106 |
多孔电极尺寸/ (个立方体) | 边长/ | 结构参数 | |||
---|---|---|---|---|---|
孔隙率 | 比表面积/ | 分形维数 | 曲折因子 | ||
0.41 | 0.545 | 1.493×107 | 3.28 | 2.36 | |
0.82 | 0.545 | 1.223×107 | 3.19 | 2.01 | |
1.64 | 0.545 | 1.306×107 | 3.11 | 2.13 |
表2 通过模拟退火算法重构的多孔电极的结构参数
Table 2 Structural parameters of porous electrode reconstructed by simulated annealing algorithm
多孔电极尺寸/ (个立方体) | 边长/ | 结构参数 | |||
---|---|---|---|---|---|
孔隙率 | 比表面积/ | 分形维数 | 曲折因子 | ||
0.41 | 0.545 | 1.493×107 | 3.28 | 2.36 | |
0.82 | 0.545 | 1.223×107 | 3.19 | 2.01 | |
1.64 | 0.545 | 1.306×107 | 3.11 | 2.13 |
1 | Kong L J, Zhong M, Shuang W, et al. Electrochemically active sites inside crystalline porous materials for energy storage and conversion[J]. Chemical Society Reviews, 2020, 49(8): 2378-2407. |
2 | Zhou J W, Wang B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage[J]. Chemical Society Reviews, 2017, 46(22): 6927-6945. |
3 | Sun M H, Huang S Z, Chen L H, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine[J]. Chemical Society Reviews, 2016, 45(12): 3479-3563. |
4 | Yang X Y, Chen L H, Li Y, et al. Hierarchically porous materials: synthesis strategies and structure design[J]. Chemical Society Reviews, 2017, 46(2): 481-558. |
5 | Berre I, Doster F, Keilegavlen E. Flow in fractured porous media: a review of conceptual models and discretization approaches[J]. Transport in Porous Media, 2019, 130(1): 215-236. |
6 | Shojaeefard M H, Molaeimanesh G R, Nazemian M, et al. A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation[J]. International Journal of Hydrogen Energy, 2016, 41(44): 20276-20293. |
7 | Tao H L, Lian C, Liu H L. Multiscale modeling of electrolytes in porous electrode: from equilibrium structure to non-equilibrium transport[J]. Green Energy & Environment, 2020, 5(3): 303-321. |
8 | Lian C, Janssen M, Liu H L, et al. Blessing and curse: how a supercapacitor's large capacitance causes its slow charging[J]. Physical Review Letters, 2020, 124(7): 076001. |
9 | Ali B A, Allam N K. A first-principles roadmap and limits to design efficient supercapacitor electrode materials[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(32): 17494-17511. |
10 | Kong X, Jiang J, Lu D N, et al. Molecular theory for electrokinetic transport in pH-regulated nanochannels[J]. The Journal of Physical Chemistry Letters, 2014, 5(17): 3015-3020. |
11 | Gan Z D, Wang Y L, Wang M, et al. Ionophobic nanopores enhancing the capacitance and charging dynamics in supercapacitors with ionic liquids[J]. Journal of Materials Chemistry A, 2021, 9(29): 15985-15992. |
12 | Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes[J]. Nature Materials, 2020, 19(5): 552-558. |
13 | Kavokine N, Netz R R, Bocquet L. Fluids at the nanoscale: from continuum to subcontinuum transport[J]. Annual Review of Fluid Mechanics, 2021, 53: 377-410. |
14 | Tao H L, Lin S, Lian C, et al. Microscopic insights into the ion transport in graphene-based membranes with different interlayer spacing distributions[J]. Chemical Engineering Science, 2020, 212: 115354. |
15 | d'Entremont A, Pilon L. First-principles thermal modeling of electric double layer capacitors under constant-current cycling[J]. Journal of Power Sources, 2014, 246: 887-898. |
16 | Sakaguchi H, Baba R. Charging dynamics of the electric double layer in porous media[J]. Physical Review E, 2007, 76(1): 011501. |
17 | Webman I. Effective-medium approximation for diffusion on a random lattice[J]. Physical Review Letters, 1981, 47(21): 1496-1499. |
18 | Lian C, Su H P, Li C Z, et al. Non-negligible roles of pore size distribution on electroosmotic flow in nanoporous materials[J]. ACS Nano, 2019, 13(7): 8185-8192. |
19 | Gostick J, Aghighi M, Hinebaugh J, et al. OpenPNM: a pore network modeling package[J]. Computing in Science & Engineering, 2016, 18(4): 60-74. |
20 | Sadeghi M A, Aganou M, Kok M, et al. Exploring the impact of electrode microstructure on redox flow battery performance using a multiphysics pore network model[J]. Journal of the Electrochemical Society, 2019, 166(10): A2121-A2130. |
21 | Agnaou M, Sadeghi M A, Tranter T G, et al. Modeling transport of charged species in pore networks: solution of the Nernst-Planck equations coupled with fluid flow and charge conservation equations[J]. Computers & Geosciences, 2020, 140: 104505. |
22 | Conroy G C, Vannier M W. Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high-resolution computed tomography[J]. Science, 1984, 226(4673): 456-458. |
23 | Pan T. Computed tomography: from photon statistics to modern cone-beam CT[J]. Journal of Nuclear Medicine, 2009, 50(7): 1194. |
24 | Kunanusont N, Shimoyama Y. Porous carbon electrode for Li-air battery fabricated from solvent expansion during supercritical drying[J]. The Journal of Supercritical Fluids, 2018, 133: 77-85. |
25 | Bousige C, Ghimbeu C M, Vix-Guterl C, et al. Realistic molecular model of kerogen's nanostructure[J]. Nature Materials, 2016, 15(5): 576-582. |
26 | van Breugel K. Numerical simulation of hydration and microstructural development in hardening cement-based materials (Ⅰ): Theory[J]. Cement and Concrete Research, 1995, 25(2): 319-331. |
27 | Ankit K, Urai J L, Nestler B. Microstructural evolution in bitaxial crack-seal veins: a phase-field study[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(5): 3096-3118. |
28 | Torquato S, Haslach H W. Random heterogeneous materials: microstructure and macroscopic properties[J]. Applied Mechanics Reviews, 2002, 55(4): B62-B63. |
29 | Torquato S, Lu B. Chord-length distribution function for two-phase random media[J]. Physical Review E, 1993, 47(4): 2950-2953. |
30 | Okabe H, Blunt M J. Prediction of permeability for porous media reconstructed using multiple-point statistics[J]. Physical Review E, 2004, 70(6): 066135. |
31 | Yeong C L Y, Torquato S. Reconstructing random media[J]. Physical Review E, 1998, 57(1): 495-506. |
32 | Karsanina M V, Gerke K M, Skvortsova E B, et al. Universal spatial correlation functions for describing and reconstructing soil microstructure[J]. PLoS One, 2015, 10(5): e0126515. |
33 | Mariethoz G, Renard P, Straubhaar J. The Direct Sampling method to perform multiple-point geostatistical simulations[J]. Water Resources Research, 2010, 46(11): W11536. |
34 | Wu W, Jiang F M. Simulated annealing reconstruction and characterization of the three-dimensional microstructure of a LiCoO2 lithium-ion battery cathode[J]. Materials Characterization, 2013, 80: 62-68. |
35 | Habte B T, Jiang F M. Microstructure reconstruction and impedance spectroscopy study of LiCoO2, LiMn2O4 and LiFePO4 Li-ion battery cathodes[J]. Microporous and Mesoporous Materials, 2018, 268: 69-76. |
36 | Habte B T, Jiang F M. Effect of microstructure morphology on Li-ion battery graphite anode performance: electrochemical impedance spectroscopy modeling and analysis[J]. Solid State Ionics, 2018, 314: 81-91. |
37 | Stenzel O, Westhoff D, Manke I, et al. Graph-based simulated annealing: a hybrid approach to stochastic modeling of complex microstructures[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055004. |
38 | Prokop M, Vesely M, Capek P, et al. High-temperature PEM fuel cell electrode catalyst layers(Ⅰ): Microstructure reconstructed using FIB-SEM tomography and its calculated effective transport properties[J]. Electrochimica Acta, 2022, 413: 140133. |
39 | He S, Habte B T, Jiang F. LBM prediction of effective electric and species transport properties of lithium-ion battery graphite anode[J]. Solid State Ionics, 2016, 296: 146-153. |
40 | Vinodh R, Gopi C V V M, Kummara V G R, et al. A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications[J]. Journal of Energy Storage, 2020, 32: 101831. |
41 | Vandaele J, Louis B, Liu K Z, et al. Structural characterization of fibrous synthetic hydrogels using fluorescence microscopy[J]. Soft Matter, 2020, 16(17): 4210-4219. |
42 | Laurent L, Bart R, Diederik J, et al. Nested multiresolution hierarchical simulated annealing algorithm for porous media reconstruction[J]. Physical Review E, 2019, 100(5): 053316. |
43 | Tang T, Teng Q, He X, et al. A pixel selection rule based on the number of different-phase neighbours for the simulated annealing reconstruction of sandstone microstructure[J]. Journal of Microscopy, 2009, 234(3): 262-268. |
44 | Talukdar S, Torsæter O, Ioannidis M, et al. Stochastic reconstruction of chalk from 2D images[J]. Transport in Porous Media, 2002, 48(1): 101-123. |
45 | Foroutan-pour K, Dutilleul P, Smith D L. Advances in the implementation of the box-counting method of fractal dimension estimation[J]. Applied Mathematics and Computation, 1999, 105(2): 195-210. |
46 | Fernández-Martínez M, Sánchez-Granero M A. Fractal dimension for fractal structures: a Hausdorff approach revisited[J]. Journal of Mathematical Analysis and Applications, 2014, 409(1): 321-330. |
47 | Flandrin P. Wavelet analysis and synthesis of fractional Brownian motion[J]. IEEE Transactions on Information Theory, 1992, 38(2): 910-917. |
48 | Kim A S, Chen H Q. Diffusive tortuosity factor of solid and soft cake layers: a random walk simulation approach[J]. Journal of Membrane Science, 2006, 279(1/2): 129-139. |
49 | Janssen M, Bier M. Transient response of an electrolyte to a thermal quench[J]. Physical Review E, 2019, 99(4): 042136. |
50 | Nightingale E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387. |
51 | Wang M, Li P, Yu F Q. Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage[J]. Renewable Energy, 2021, 172: 599-605. |
52 | Kilic M S, Bazant M Z, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages(Ⅰ): Double-layer charging[J]. Physical Review E, 2007, 75(2): 021502. |
53 | Kilic M S, Bazant M Z, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages(Ⅱ): Modified Poisson-Nernst-Planck equations[J]. Physical Review E, 2007, 75(2): 021503. |
54 | Saurabh K, Solovchuk M A, Sheu T W H. Lattice Boltzmann method to simulate three-dimensional ion channel flow using fourth order Poisson-Nernst-Planck-Bikerman model[J]. Physics of Fluids, 2021, 33(8): 081910. |
55 | Raissi M, Karniadakis G E. Hidden physics models: machine learning of nonlinear partial differential equations[J]. Journal of Computational Physics, 2018, 357: 125-141. |
[1] | 余后川, 任腾, 张宁, 姜晓滨, 代岩, 张晓鹏, 鲍军江, 贺高红. 二维氧化石墨烯膜离子选择性传递调控的研究进展[J]. 化工学报, 2023, 74(1): 303-312. |
[2] | 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305. |
[3] | 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414. |
[4] | 祝海涛, 杨波, 吴雅琴, 高从堦. 电渗析脱盐过程离子传递现象的数值模拟[J]. 化工学报, 2020, 71(8): 3518-3526. |
[5] | 张长兴, 王德水, 刘玉峰, 孙始财, 彭冬根. 模拟退火算法在岩土热物性参数确定中的应用[J]. 化工学报, 2015, 66(2): 545-552. |
[6] | 吴敏,肖武,贺高红. 综合考虑泵的设备及运行费用的换热网络优化[J]. 化工进展, 2014, 33(03): 599-604. |
[7] | 赵振宇,李培金,孟庆函,曹 兵. 多孔镍铁电极电解还原制备2,2'-二氯氢化偶氮苯 [J]. CIESC Journal, 2010, 29(9): 1640-. |
[8] | 孙彦平. 关于多孔电极理论数模及非线性分析 [J]. CIESC Journal, 2007, 58(9): 2161-2168. |
[9] | 朱振兴,卫宏远,杨 华. 考虑能耗影响的多产品间歇化工过程优化排序 [J]. CIESC Journal, 2006, 25(12): 1504-. |
[10] | 孟凡旭, 杨伯伦, 姚瑞清, 陶贤湖. 混合进化算法研究甲基叔戊基醚合成反应动力学 [J]. 化工学报, 2003, 54(3): 327-332. |
[11] | 李保山; 牛玉舒; 翟玉春; 全明秀; 胡壮麒. 发泡金属电极的宏观反应速率及电势分布 [J]. CIESC Journal, 2001, 52(7): 593-600. |
[12] | 王举,袁希钢,陈中州. 用于多产品间歇化工过程排序的模拟退火算法 [J]. CIESC Journal, 2000, 51(6): 751-756. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||