化工学报 ›› 2023, Vol. 74 ›› Issue (1): 303-312.DOI: 10.11949/0438-1157.20221074
余后川1,2(), 任腾1,2, 张宁1,2(), 姜晓滨1, 代岩3, 张晓鹏1,2, 鲍军江1,2, 贺高红1()
收稿日期:
2022-07-09
修回日期:
2022-10-11
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
张宁,贺高红
作者简介:
余后川(1997—),男,硕士研究生,yuhouchuan9@163.com
基金资助:
Houchuan YU1,2(), Teng REN1,2, Ning ZHANG1,2(), Xiaobin JIANG1, Yan DAI3, Xiaopeng ZHANG1,2, Junjiang BAO1,2, Gaohong HE1()
Received:
2022-07-09
Revised:
2022-10-11
Online:
2023-01-05
Published:
2023-03-20
Contact:
Ning ZHANG, Gaohong HE
摘要:
膜分离技术具有低能耗和高选择性的优势,已成为离子分离的重要手段。氧化石墨烯(GO)具有单原子厚度,表面富含多种含氧基团,利用其构筑的层叠膜展现出精确的离子筛分性能。本文系统地介绍了GO膜在离子选择性传递调控方面取得的研究进展,从层叠通道调控和电荷修饰两个角度对GO膜的离子选择性传递性能进行阐述。对于层叠通道,可采用部分还原法、物理插层法、化学交联法进行精确调控,实现GO膜对离子筛分性能的强化。对于电荷修饰,常采用正/负电荷改性策略对GO膜与离子间的长程静电作用进行调控。本文将深化对GO层叠膜离子选择性传递机制的认识,同时提出该领域的发展方向,以期促进GO膜在离子分离领域的进一步发展。
中图分类号:
余后川, 任腾, 张宁, 姜晓滨, 代岩, 张晓鹏, 鲍军江, 贺高红. 二维氧化石墨烯膜离子选择性传递调控的研究进展[J]. 化工学报, 2023, 74(1): 303-312.
Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport[J]. CIESC Journal, 2023, 74(1): 303-312.
1 | Wang Z Z, Ma C, Xu C Y, et al. Graphene oxide nanofiltration membranes for desalination under realistic conditions[J]. Nature Sustainability, 2021, 4(5): 402-408. |
2 | Ordoñez J, Gago E J, Girard A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 195-205. |
3 | O’Connell D W, Birkinshaw C, O’Dwyer T F. Heavy metal adsorbents prepared from the modification of cellulose: a review[J]. Bioresource Technology, 2008, 99(15): 6709-6724. |
4 | Wang J L, Zhuang S T. Removal of cesium ions from aqueous solutions using various separation technologies[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(2): 231-269. |
5 | Xiao J L, Sun S Y, Song X F, et al. Lithium ion recovery from brine using granulated polyacrylamide-MnO2 ion-sieve[J]. Chemical Engineering Journal, 2015, 279: 659-666. |
6 | Zante G, Boltoeva M, Masmoudi A, et al. Lithium extraction from complex aqueous solutions using supported ionic liquid membranes[J]. Journal of Membrane Science, 2019, 580: 62-76. |
7 | Huang Q B, Liu S, Guo Y A, et al. Separation of mono-/di-valent ions via charged interlayer channels of graphene oxide membranes[J]. Journal of Membrane Science, 2022, 645: 120212. |
8 | Razmjou A, Asadnia M, Hosseini E, et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J]. Nature Communications, 2019, 10(1): 5793. |
9 | Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3] n [J]. Science, 1999, 283(5405): 1148-1150. |
10 | Liu X H, Guan C Z, Ding S Y, et al. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions[J]. Journal of American Chemistry Society, 2013, 135(28): 10470-10474. |
11 | Das S, Heasman P, Ben T, et al. Porous organic materials: strategic design and structure-function correlation[J]. Chemical Reveiw, 2017, 117(3): 1515-1563. |
12 | Toda K, Furue R, Hayami S. Recent progress in applications of graphene oxide for gas sensing: a review[J]. Analytica Chimica Acta, 2015, 878: 43-53. |
13 | Yang R, Wu S, Wang D M, et al. Fabrication of high-quality all-graphene devices with low contact resistances[J]. Nano Research, 2014, 7(10): 1449-1456. |
14 | Lin Y, Waston K A, Kim J W. Bulk preparation of holey graphene via controlled catalytic oxidation[J]. Nanoscale, 2013, 5(17): 7814-7824. |
15 | Liu X P, Zhang L, Cui X W, et al. 2D material nanofiltration membranes: from fundamental understandings to rational design[J]. Advanced Science, 2021, 8(23): e2102493. |
16 | Wei Y B, Pastuovic Z, Murphy T, et al. Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation[J]. Applied Surface Science, 2020, 505: 144651. |
17 | Zhang M C, Guan K C, Ji Y F, et al. Controllable ion transport by surface-charged graphene oxide membrane[J]. Nature Communications, 2019, 10(1): 1253. |
18 | Deng J X, You Y, Bustamante H, et al. Mechanism of water transport in graphene oxide laminates[J]. Chemical Science, 2017, 8(3): 1701-1704. |
19 | Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. |
20 | Esfandiar A, Radha B, Wang F C, et al. Size effect in ion transport through angstrom-scale slits[J]. Science, 2017, 358(6362): 511-513. |
21 | Hu M, Mi B X. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction[J]. Journal of Membrane Science, 2014, 469: 80-87. |
22 | Liang S S, Wang S, Chen L, et al. Controlling interlayer spacings of graphene oxide membranes with cationic for precise sieving of mono-/multi-valent ions[J]. Separation and Purification Technology, 2020, 241: 116738. |
23 | Cho Y H, Kim H W, Lee H D, et al. Water and ion sorption, diffusion, and transport in graphene oxide membranes revisited[J]. Journal of Membrane Science, 2017, 544: 425-435. |
24 | Oh Y, Armstrong D L, Finnerty C, et al. Understanding the pH-responsive behavior of graphene oxide membrane in removing ions and organic micropollulants[J]. Journal of Membrane Science, 541: 235-243. |
25 | Cheng C, Yaroshchuk A, Bruening M L. Fundamentals of selective ion transport through multilayer polyelectrolyte membranes[J]. Langmuir, 2013, 29(6): 1885-1892. |
26 | Hong S, Constans C, Martins M V S, et al. Scalable graphene-based membranes for ionicsieving with ultrahigh charge selectivity[J]. Nano Letters, 2017, 17(2): 728-732. |
27 | Hu P Z, Huang B C, Miao Q D, et al. Ion transport behavior through thermally reduced graphene oxide membrane for precise ion separation[J]. Crystals, 2019, 9(4): 214. |
28 | Hung W S, An Q F, Guzman M D, et al. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide[J]. Carbon, 2014, 68: 670-677. |
29 | Sun P Z, Zhu M, Wang K L, et al. Selective ion penetration of graphene oxide membranes[J]. ACS Nano, 2013, 7(1): 428-437. |
30 | Raidongia K, Huang J X. Nanofluidic ion transport through reconstructed layered materials[J]. Journal of the American Chemical Society, 2012, 134(40): 16528-16531. |
31 | Asghar F, Shakoor B, Fatima S, et al. Fabrication and prospective applications of graphene oxide-modified nanocomposites for wastewater remediation[J]. RSC Advances, 2022, 12(19): 11750-11768. |
32 | Kulkarni H B, Tambe P, Joshi G M. Influence of covalent and non-covalent modification of graphene on the mechanical, thermal and electrical properties of epoxy/graphene nanocomposites: a review[J]. Composite Interfaces, 2017, 25(5/6/7): 381-414. |
33 | Li X F, Liu T, Wang D H, et al. Superlight adsorbent sponges based on graphene oxide cross-linked with poly(vinyl alcohol) for continuous flow adsorption[J]. Acs Applied Materials & Interfaces, 2018, 10(25): 21672-21680. |
34 | Xi Y H, Liu Z, Ji J Y, et al. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions[J]. Journal of Membrane Science, 2018, 550: 208-218. |
35 | Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343: 752-754. |
36 | Kumar P V, Bardhan N M, Tongay S, et al. Scalable enhancement of graphene oxide properties by thermally driven phase transformation[J]. Nature Chemistry, 2013, 6(2): 151-158. |
37 | Liu Y C, Yu Z X, Wang Q X, et al. Application of sodium dodecyl sulfate intercalated Co-Al LDH composite materials (RGO/PDA/SDS-LDH) in membrane separation[J]. Applied Clay Science, 2021, 209: 106138. |
38 | Rajaura R S, Singhal I, SharmaK N, et al. Efficient chemical vapour deposition and arc discharge system for production of carbon nano-tubes on a gram scale[J]. The Review of Scientific Instruments, 2019, 90: 123903-123915. |
39 | Zhang P, Gong J L, Zeng G M, et al. Enhanced permeability of rGO/S-GO layered membranes with tunable inter-structure for effective rejection of salts and dyes[J]. Separation and Purification Technology, 2019, 220: 309-319. |
40 | Huang H H, Joshi R K, De Silva K K H, et al. Fabrication of reduced graphene oxide membranes for water desalination[J]. Journal of Membrane Science, 2019, 572: 12-19. |
41 | Buesseler K, Aoyama M, Fukasawa M. Impacts of the Fukushima nuclear power plants on marine radioactivity[J]. Environmental Science & Technology, 2011, 45(23): 9931-9935. |
42 | Jiang J, Mu L H, Qiang Y, et al. Unexpected selective absorption of lithium in thermally reduced graphene oxide membranes[J]. Chinese Physics Letters, 2021, 38(11): 116802. |
43 | Liu X H, Zhong M L, Chen X Y, et al. Separating lithium and magnesium in brine by aluminum-based materials[J]. Hydrometallurgy, 2018, 176: 73-77. |
44 | Jiang L L, Luo D, Lu X, et al. Comparative study on chemical reduction of free-standing flexible GO films and their cyclic voltammetry performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555: 630-637. |
45 | Zhang Z S, Zou L, Aubry C, et al. Chemically crosslinked rGO laminate film as an ion selective barrier of composite membrane[J]. Journal of Membrane Science, 2016, 515: 204-211. |
46 | Ye S B, Liu Y, Feng J C. Low-density, mechanical compressible, water-induced self-recoverable graphene aerogels for water treatment[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22456-22464. |
47 | Huang L L, Li Z Y, Luo Y, et al. Low-pressure loose GO composite membrane intercalated by CNT for effective dye/salt separation[J]. Separation and Purification Technology, 2021, 256: 117839. |
48 | Huang C C, Bai H, Li C, et al. A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents[J]. Chemical Communications, 2011, 47(17): 4962-4964. |
49 | Xu Y X, Wu Q, Sun Y Q, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels[J]. ACS Nano, 2010, 4(12): 7358-7362. |
50 | Hu H, Zhao Z B, Wan W B, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15): 2219-2223. |
51 | Wang Y, Wei Z D, Nie Y, et al. Generation of three dimensional pore controlled nitrogen-doped graphene hydrogels for high-performance supercapacitors by employing formamide as the modulator[J]. Journal of Materials Chemistry A, 2017, 5(4): 1442-1445. |
52 | Han Z Y, Huang L J, Qu H J, et al. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment[J]. Journal of Materials Science, 2021, 56(16): 9545-9574. |
53 | Xu C, Cui A J, Xu Y L, et al. Graphene oxide-TiO2 composite filtration membranes and their potential application for water purification[J]. Carbon, 2013, 62: 465-471. |
54 | Guan K C, Zhao D, Zhang M C, et al. 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance[J]. Journal of Membrane Science, 2017, 542: 41-51. |
55 | Sun J Q, Chen Y, Hu C Z, et al. Modulation of cation trans-membrane transport in GO-MoS2 membranes through simultaneous control of interlayer spacing and ion-nanochannel interactions[J]. Chemosphere, 2019, 222: 156-164. |
56 | Huang X M, Pan M. The highly efficient adsorption of Pb(Ⅱ) on graphene oxides: a process combined by batch experiments and modeling techniques[J]. Journal of Molecular Liquids, 2016, 215: 410-416. |
57 | Wang L, Guo X H, Cao K C, et al. Effective charge-discriminated group separation of metal ions under highly acidic conditions using nanodiamond-pillared graphene oxide membrane[J]. Journal of Materials Chemistry A, 2017, 5(17): 8051-8061. |
58 | Chen L, Shi G S, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383. |
59 | Lu D, Yao Z K, Jiao L, et al. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane[J]. Advanced Membranes, 2022, 2: 100032. |
60 | Hu J Q, Liu Z, Deng K, et al. A novel membrane with ion-recognizable copolymers in graphene-based nanochannels for facilitated transport of potassium ions[J]. Journal of Membrane Science, 2019, 591: 117345. |
61 | Jia Z Q, Wang Y, Shi W X, et al. Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation[J]. Journal of Membrane Science, 2016, 520: 139-144. |
62 | Meng N, Zhao W, Shamsaei E, et al. A low-pressure GO nanofiltration membrane crosslinked via ethylenediamine[J]. Journal of Membrane Science, 2018, 548: 363-371. |
63 | Zhang N, Qi W X, Huang L L, et al. A composite membrane of cross-linked GO network semi-interpenetrating in polysulfone substrate for dye removal from water[J]. Journal of Membrane Science, 2020, 613: 118456. |
64 | Leong Z Y, Han Z J, Wang G Z, et al. Electric field modulated ion-sieving effects of graphene oxide membranes[J]. Journal of Materials Chemistry A, 2021, 9(1): 244-253. |
65 | Jia Z Q, Shi W X. Tailoring permeation channels of graphene oxide membranes for precise ion separation[J]. Carbon, 2016, 101: 290-295. |
66 | Sun P Z, Zhu M, Wang K L, et al. Selective ion penetration of graphene oxide membranes[J]. ACS Nano, 2013, 7(1): 428-437. |
67 | Jia Z Q, Wang Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation[J]. Journal of Materials Chemistry A, 2015, 3(8): 4405-4412. |
68 | White R L, White C M, Turgut H, et al. Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85: 18-28. |
69 | Qian Y J, Shang J, Liu D, et al. Enhanced ion sieving of graphene oxide membranes via surface amine functionalization[J]. Journal of the American Chemical Society, 2021, 143(13): 5080-5090. |
70 | Wu X N, Yang L, Shao W L, et al. Fabrication of high performance TFN membrane incorporated with graphene oxide via support-free interfacial polymerization[J]. Science of the Total Environment, 2021, 793:148503. |
71 | Zhao Y, Shi W H, der Bruggen V, et al. Tunable nanoscale interlayer of graphene with symmetrical polyelectrolyte multilayer architecture for lithium extraction[J]. Advanced Materials Interfaces, 2018, 5(6): 1701449. |
72 | Tan S, Zhang D F, Nguyen M T, et al. Tuning the charge and hydrophobicity of graphene oxide membranes by functionalization with ionic liquids at epoxide sites[J]. ACS Applied Materials & Interfaces, 2022, 14(16): 19031-19042. |
73 | Ahmad S Z N, Salleh W N W, Ismail A F, et al. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: toxicity, roles of functional groups and mechanisms[J]. Chemosphere, 2020, 248: 126008. |
74 | Xue Y H, Xia Y, Yang S, et al. Atomic-scale ion transistor with ultrahigh diffusivity[J]. Science, 2021, 372: 501-503. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[10] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[13] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[14] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[15] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||