化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2289-2305.doi: 10.11949/0438-1157.20220062

• 综述与专论 • 上一篇    下一篇

介尺度视角下的电催化:从界面、隔膜到多孔电极

张文静(),李静(),魏子栋()   

  1. 重庆大学化学化工学院,重庆 401331
  • 收稿日期:2022-01-12 修回日期:2022-03-13 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 李静,魏子栋 E-mail:2892130627@qq.com;lijing@cqu.edu.cn;zdwei@cqu.edu.cn
  • 作者简介:张文静(1996—),女,博士研究生,2892130627@qq.com
  • 基金资助:
    国家自然科学基金项目(91834301)

Electrocatalysis from a mesoscale perspective: interface, membrane and porous electrode

Wenjing ZHANG(),Jing LI(),Zidong WEI()   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
  • Received:2022-01-12 Revised:2022-03-13 Published:2022-06-05 Online:2022-06-30
  • Contact: Jing LI,Zidong WEI E-mail:2892130627@qq.com;lijing@cqu.edu.cn;zdwei@cqu.edu.cn

摘要:

电催化过程是时空多尺度的复杂系统,探究认识多孔电极电催化体系中不同层次和尺度下的介尺度行为,对进一步强化电催化反应以及物质扩散传递,提高效率减低能耗具有重要的意义。围绕多孔电极、电催化剂以及隔膜,对多级孔电极结构的构筑、电催化剂表界面活性位调控、介尺度结构可控制备策略和隔膜结构调控中存在的介尺度现象以及介尺度效应进行了详细的综述,发现电催化体系中各层次之间的介尺度行为可以用于优化、调控、指导多孔电极、电催化剂以及隔膜的设计与制备,为丰富和完善电化学催化体系提供了新思路和新角度。

关键词: 介尺度, 多孔电极, 电化学催化, 催化剂, 隔膜

Abstract:

The electrocatalytic process is a complex system engineering involving multiscale scientific problems. It is of great significance to explore and understand the mesoscale behavior of porous electrode electrocatalytic systems at different levels and scales, which is of great significance to further strengthen the electrocatalytic reaction and material diffusion and transfer, improve efficiency and reduce energy consumption. This paper gives a detailed review to the construction of hierarchically porous electrodes, tuning of the active sites located at the surfaces and interfaces, design and controlled preparation of mesoscale structures, the mesoscale characteristics and effects of the membrane materials. It is interesting to find that a deep understanding of the varied-level mesoscale mechanisms may lead to optimal and tunable design and preparation of porous electrodes, electrocatalysts, and membranes, and thus supply copious novel ideas and perspectives for forming a perfect and complete theory system for electrochemical catalysis.

Key words: mesoscale, porous electrode, electrochemical catalysis, catalysts, membrane

中图分类号: 

  • O 646.5

图1

电催化结构中的介尺度特征[10]"

图2

气体多孔电极“一、二、三、四”特征描述示意图"

图3

(a)基于Co - Co3O4嵌入空心氮掺杂碳催化剂的示意图;(b)Co3O4/HNCP-40催化剂的SEM, TEM, STEM和EDS mapping图像;(c)ORR极化曲线和5000圈老化前后对比[15];(d)Cu3P/MoP@C催化剂的合成示意图;(e)HR-TEM图像;(f)ORR极化曲线和半波电位以及在0.9 V下的动力学电流密度对比曲线[16]"

图4

(a)构造空心结构的应力诱导定向收缩机制示意图;(b)在O2饱和的0.1 mol/L KOH 溶液中的ORR极化曲线;(c)催化剂的BET比表面积对比[17]"

图5

(a)催化剂的SEM和TEM图像;(b)催化剂的比表面积和总孔体积比较;(c)MEA性能测试图;(d)自制“拨浪鼓”光学图片和工作示意图;(e)催化剂以10/15 mA/cm2电流密度恒电流放电时的计时电位曲线[22]"

图6

(a) Pt3Co/C-O 和Pt3Co/C-B催化剂的合成示意图; (b) ORR极化曲线以及质量活性(MA)和比活性(SA)比较;(c)催化剂以10/15 mA/cm2电流密度恒电流放电时的计时电位曲线;(d) 催化剂在H2-O2和(e)H2-Air燃料电池中的极化曲线和功率密度曲线[26]"

图7

(a) 高Pt (H-PtNi/C)(上图)和低Pt (L-PtNi/C)(下图)催化剂的TEM图像;(b)催化剂负载在碳(GDL为气体扩散层;CL为催化剂层) 催化剂上的膜电极(MEA)示意图;(c)催化剂在0.9 V(vs RHE)下的质量活性和比活性比较;(d)催化剂在H2-O2燃料电池中的极化曲线和功率密度曲线[27]"

图8

(a) 过电位为0.3 V时的电流密度对比[37];(b)中性pH条件下,MoP700表面HER过程示意图;(c)HER极化曲线及Tafel斜率大小比较[38]"

图9

(a)IO-Ru-TiO2 /C、Ru-TiO2 /C和Ru/C催化剂的合成示意图[39];(b)Ru@ TiO2的HAADF-STEM图像[40];(c)Pt/O–TiO2 和 Pt/Ti–TiO2上H吸附能和H,OH,H2O的吸附自由能[41]"

图10

Ir/Mo-MoO2,Ir/O-MoO2和Ir/MoO2在H2饱和的0.1 mol/L KOH溶液中的(a)差分电荷密度;(b) pCOHP和PDOS曲线;(c)Ir 4f XPS高分辨光谱;(d)HOR极化曲线[42]"

图11

(a)NiO-Ni3S2异质结及其表面催化电解水过程示意图[48];(b)Fe3O4/FeS2-x合成示意图;(c)OER极化曲线;(d)Fe3O4/FeS2-1和Fe3O4/FeS2-2.5的HRTEM图像[49]"

图12

电催化剂介尺度结构的可控制备"

图13

基于化学有序能和表面偏析能主导的催化剂结构演变机理[55]"

图14

(a)气凝胶结构FeNC材料制备示意图;(b)ORR极化曲线;(c)半波电位和动力学电流密度比较[59]"

图15

(a) FeNx-CNTs催化剂的制备示意图;(b)阴离子交换膜(AEMFC)和(c)质子膜(PEMFC)H2-O2燃料电池的极化曲线和功率密度曲线[64]"

图16

(a)低倍和高倍阴离子交换膜图像(IPN AEM);(b)碱性膜(AEMFC)H2-空燃料电池的极化曲线和功率密度曲线[74]"

图17

(a)互穿聚合物网络阴离子交换膜(IPN AEM);(b)IPN AEM的碱性稳定性测试[75]"

1 李宇明, 刘梓烨, 张启扬, 等. 氮掺杂碳材料的制备及其在催化领域中的应用[J]. 化工学报, 2021, 72(8): 3919-3932.
Li Y M, Liu Z Y, Zhang Q Y, et al. Preparation of nitrogen-doped carbon materials and their applications in catalysis[J]. CIESC Journal, 2021, 72(8): 3919-3932.
2 Rabiee H, Ge L, Zhang X Q, et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review[J]. Energy & Environmental Science, 2021, 14(4): 1959-2008.
3 Wang M, Zhang L, He Y J, et al. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2021, 9(9): 5320-5363.
4 Wu Z Z, Gao F Y, Gao M R. Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction[J]. Energy & Environmental Science, 2021, 14(3): 1121-1139.
5 Wang Y, Huang X, Wei Z D. Recent developments in the use of single-atom catalysts for water splitting[J]. Chinese Journal of Catalysis, 2021, 42(8): 1269-1286.
6 葛蔚, 刘新华, 任瑛, 等. 从多尺度到介尺度: 复杂化工过程模拟的新挑战[J]. 化工学报, 2010, 61(7): 1613-1620.
Ge W, Liu X H, Ren Y, et al. From multi-scale to meso-scale: new challenges for simulation of complex processes in chemical engineering[J]. CIESC Journal, 2010, 61(7): 1613-1620.
7 朱育丹, 陆小华, 郭晓静, 等. 材料化学工程科学内涵及方法初探: 从介观尺度界面流体行为出发认知材料[J]. 化工学报, 2013, 64(1): 148-154.
Zhu Y D, Lu X H, Guo X J, et al. Preliminary discussion on scientific connotation and research method of aterial-oriented chemical engineering: understanding materials based on confined interfacial fluid behavior on mesoscale[J]. CIESC Journal, 2013, 64(1): 148-154.
8 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学: 化学, 2014, 44(3): 277-281.
Li J H, Hu Y, Yuan Q. Mesoscience: exploring old problems from a new angle[J]. Scientia Sinica Chimica, 2014, 44(3): 277-281.
9 叶艳玲, 李静海. 介科学: 探索介尺度共性原理[J]. 中国科技术语, 2017, 19(5): 69.
Ye Y L, Li J H. Mesoscience: exploring the common principle at mesoscales[J]. China Terminology, 2017, 19(5): 69.
10 Peng L S, Wei Z D. Recent progress of mesoscience in design of electrocatalytic materials for hydrogen energy conversion[J]. Particuology, 2020, 48: 19-33.
11 张文静, 李静, 魏子栋. 燃料电池空气电极的孔道结构调控[J]. 化工学报, 2020, 71(10): 4553-4574.
Zhang W J, Li J, Wei Z D. Strategies for tuning porous structures of air electrode in fuel cells[J]. CIESC Journal, 2020, 71(10): 4553-4574.
12 Yang Z C, Zhang Y, Kong J H, et al. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of α-cyclodextrin templated by F127 block copolymers[J]. Chemistry of Materials, 2013, 25(5): 704-710.
13 Hwang J, Kim S, Wiesner U, et al. Generalized access to mesoporous inorganic particles and hollow spheres from multicomponent polymer blends[J]. Advanced Materials, 2018, 30(27): 1801127.
14 Li B Q, Zhang S Y, Kong L, et al. Porphyrin organic framework hollow spheres and their applications in lithium-sulfur batteries[J]. Advanced Materials, 2018, 30(23): e1707483.
15 Ding D N, Shen K, Chen X D, et al. Multi-level architecture optimization of MOF-templated co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR[J]. ACS Catalysis, 2018, 8(9): 7879-7888.
16 Guo M, Xu M J, Qu Y, et al. Electronic/mass transport increased hollow porous Cu3P/MoP nanospheres with strong electronic interaction for promoting oxygen reduction in Zn-air batteries[J]. Applied Catalysis B: Environmental, 2021, 297: 120415.
17 Wang M J, Mao Z X, Liu L, et al. Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction[J]. Small, 2018, 14(52): e1804183.
18 Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical Reviews, 2007, 107(10): 3904-3951.
19 Choi J Y, Yang L J, Kishimoto T, et al. Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding? [J]. Energy & Environmental Science, 2017, 10(1): 296-305.
20 Guo L, Jiang W J, Zhang Y, et al. Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction[J]. ACS Catalysis, 2015, 5(5): 2903-2909.
21 Takenaka S, Miyamoto H, Utsunomiya Y, et al. Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs[J]. The Journal of Physical Chemistry C, 2014, 118(2): 774-783.
22 Wang M J, Zhao T, Luo W, et al. Quantified mass transfer and superior antiflooding performance of ordered macro-mesoporous electrocatalysts[J]. AIChE Journal, 2018, 64(7): 2881-2889.
23 Ao X, Zhang W, Zhao B T, et al. Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanoparticles for improved activity and durability towards oxygen reduction[J]. Energy & Environmental Science, 2020, 13(9): 3032-3040.
24 Zhao W Y, Ye Y K, Jiang W J, et al. Mesoporous carbon confined intermetallic nanoparticles as highly durable electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2020, 8(31): 15822-15828.
25 Galeano C, Meier J C, Peinecke V, et al. Toward highly stable electrocatalysts via nanoparticle pore confinement[J]. Journal of the American Chemical Society, 2012, 134(50): 20457-20465.
26 Hong W, Shen X R, Wang F Z, et al. A bimodal-pore strategy for synthesis of Pt3Co/C electrocatalyst toward oxygen reduction reaction[J]. Chemical Communications, 2021, 57(35): 4327-4330.
27 Hong W, Shen X R, Wang J, et al. High-loading Pt-alloy catalysts for boosted oxygen reduction reaction performance[J]. Chinese Journal of Chemical Engineering, 2021
28 Zhang X, Wang Y T, Liu C B, et al. Recent advances in non-noble metal electrocatalysts for nitrate reduction[J]. Chemical Engineering Journal, 2021, 403: 126269.
29 Lim K R G, Handoko A D, Nemani S K, et al. Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion[J]. ACS Nano, 2020, 14(9): 10834-10864.
30 Guo Y H, Bae J, Fang Z W, et al. Hydrogels and hydrogel-derived materials for energy and water sustainability[J]. Chemical Reviews, 2020, 120(15): 7642-7707.
31 Wang Q C, Lei Y P, Wang Y C, et al. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis[J]. Energy & Environmental Science, 2020, 13(6): 1593-1616.
32 Xu H, Shang H Y, Wang C, et al. Ultrafine Pt-based nanowires for advanced catalysis[J]. Advanced Functional Materials, 2020, 30(28): 2000793.
33 郑星群, 李莉, 魏子栋. 介尺度视角下的电催化剂调控策略[J]. 化工学报, 2020, 71(10): 4445-4461.
Zheng X Q, Li L, Wei Z D. Constructing and regulating electrocatalysts: from perspective of mesoscale[J]. CIESC Journal, 2020, 71(10): 4445-4461.
34 Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li⁺-Ni(OH)₂-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260.
35 Xiang R, Peng L S, Wei Z D. Tuning interfacial structures for better catalysis of water electrolysis[J]. Chemistry - A European Journal, 2019, 25(42): 9799-9815.
36 Yang L, Liu R M, Jiao L F. Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting[J]. Advanced Functional Materials, 2020, 30(14): 1909618.
37 Danilovic N, Subbaraman R, Strmcnik D, et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts[J]. Angewandte Chemie International Edition, 2012, 124(50): 12663-12666.
38 Xie X H, Song M, Wang L G, et al. Electrocatalytic hydrogen evolution in neutral pH solutions: dual-phase synergy[J]. ACS Catalysis, 2019, 9(9): 8712-8718.
39 Jiang J X, Tao S C, He Q, et al. Interphase-oxidized ruthenium metal with half-filled d-orbitals for hydrogen oxidation in an alkaline solution[J]. Journal of Materials Chemistry A, 2020, 8(20): 10168-10174.
40 Zhou Y, Xie Z, Jiang J, et al. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction[J]. Nature Catalysis, 2020, 3(5) : 454-462.
41 Zheng X Q, Li L, Deng M M, et al. Understanding the effect of interfacial interaction on metal/metal oxide electrocatalysts for hydrogen evolution and hydrogen oxidation reactions on the basis of first-principles calculations[J]. Catalysis Science & Technology, 2020, 10(14): 4743-4751.
42 Li M T, Xie Z Y, Zheng X Q, et al. Revealing the regulation mechanism of Ir–MoO2 interfacial chemical bonding for improving hydrogen oxidation reaction[J]. ACS Catalysis, 2021, 11(24): 14932-14940.
43 Peng L S, Liao M S, Zheng X Q, et al. Accelerated alkaline hydrogen evolution on M(OH) x /M-MoPO x (M = Ni, Co, Fe, Mn) electrocatalysts by coupling water dissociation and hydrogen ad-desorption steps[J]. Chemical Science, 2020, 11(9): 2487-2493.
44 Whittaker T, Kumar K B S, Peterson C, et al. H2 oxidation over supported Au nanoparticle catalysts: evidence for heterolytic H2 activation at the metal-support interface[J]. Journal of the American Chemical Society, 2018, 140(48): 16469-16487.
45 Miller H A, Vizza F, Marelli M, et al. Highly active nanostructured palladium-ceria electrocatalysts for the hydrogen oxidation reaction in alkaline medium[J]. Nano Energy, 2017, 33: 293-305.
46 Feng L L, Yu G T, Wu Y Y, et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. Journal of the American Chemical Society, 2015, 137(44): 14023-14026.
47 Choi J, Kim D, Zheng W R, et al. Interface engineered NiFe2O4-x/NiMoO4 nanowire arrays for electrochemical oxygen evolution[J]. Applied Catalysis B: Environmental, 2021, 286: 119857.
48 Peng L S, Shen J J, Zheng X Q, et al. Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting[J]. Journal of Catalysis, 2019, 369: 345-351.
49 Wang M J, Zheng X Q, Song L L, et al. Fe3O4/FeS2 heterostructures enable efficient oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2020, 8(28): 14145-14151.
50 Liu L C, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles[J]. Chemical Reviews, 2018, 118(10): 4981-5079.
51 Yang F, Deng D H, Pan X L, et al. Understanding nano effects in catalysis[J]. National Science Review, 2015, 2(2): 183-201.
52 Cheng N C, Sun X L. Single atom catalyst by atomic layer deposition technique[J]. Chinese Journal of Catalysis, 2017, 38(9): 1508-1514.
53 Qiao B T, Liang J X, Wang A Q, et al. Single atom gold catalysts for low-temperature CO oxidation[J]. Chinese Journal of Catalysis, 2016, 37(10): 1580-1586.
54 Wang Q M, Chen S G, Shi F, et al. Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-skin surface via space-confined pyrolysis and the nanoscale kirkendall effect[J]. Advanced Materials, 2016, 28(48): 10673-10678.
55 Zou X, Chen S G, Wang Q M, et al. Leaching- and sintering-resistant hollow or structurally ordered intermetallic PtFe alloy catalysts for oxygen reduction reactions[J]. Nanoscale, 2019, 11(42): 20115-20122.
56 Wang J, Huang Z Q, Liu W, et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. Journal of the American Chemical Society, 2017, 139(48): 17281-17284.
57 Zhang H G, Hwang S, Wang M Y, et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation[J]. Journal of the American Chemical Society, 2017, 139(40): 14143-14149.
58 Chen Y J, Ji S F, Wang Y G, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2017, 56(24): 6937-6941.
59 Hong W, Feng X, Tan L Q, et al. Preparation of monodisperse ferrous nanoparticles embedded in carbon aerogels via in situ solid phase polymerization for electrocatalytic oxygen reduction[J]. Nanoscale, 2020, 12(28): 15318-15324.
60 Jahnke H, Schönborn M, Zimmermann G. Organic dyestuffs as catalysts for fuel cells[J]. Topics in Current Chemistry, 1976, 61:131-181.
61 Gupta S, Tryk D, Bae I, et al. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction[J]. Journal of Applied Electrochemistry, 1989, 19(1): 19-27.
62 Masa J, Xia W, Muhler M, et al. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction[J]. Angewandte Chemie International Edition, 2015, 54(35): 10102-10120.
63 Ren Q, Wang H, Lu X F, et al. Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction[J]. Advanced Science, 2018, 5(3): 1700515.
64 He Q, Zeng L P, Wang J, et al. Polymer-coating-induced synthesis of FeN x enriched carbon nanotubes as cathode that exceeds 1.0 W·cm-2 peak power in both proton and anion exchange membrane fuel cells[J]. Journal of Power Sources, 2021, 489: 229499.
65 李存璞, 王建川, 魏子栋. 电化学反应器隔膜材料的分子设计与介尺度策略[J]. 化工学报, 2020, 71(10): 4490-4501.
Li C P, Wang J C, Wei Z D. Mesoscopic strategies and molecular design of diaphragm for electrochemical reactors[J]. CIESC Journal, 2020, 71(10): 4490-4501.
66 Varcoe J R, Atanassov P, Dekel D R, et al. Anion-exchange membranes in electrochemical energy systems[J]. Energy & Environmental Science, 2014, 7(10): 3135-3191.
67 Wang Y J, Qiao J L, Baker R, et al. Alkaline polymer electrolyte membranes for fuel cell applications[J]. Chemical Society Reviews, 2013, 42(13): 5768-5787.
68 Wang L Q, Peng X, Mustain W E, et al. Radiation-grafted anion-exchange membranes: the switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance[J]. Energy & Environmental Science, 2019, 12(5): 1575-1579.
69 Wang J, Zhao Y, Setzler B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells [J]. Nature Energy, 2019, 4(5): 392-398.
70 Hamada T, Hasegawa S, Fukasawa H, et al. Poly(ether ether ketone) (PEEK)-based graft-type polymer electrolyte membranes having high crystallinity for high conducting and mechanical properties under various humidified conditions[J]. Journal of Materials Chemistry A, 2015, 3(42): 20983-20991.
71 Lee W H, Kim Y S, Bae C. Robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes[J]. ACS Macro Letters, 2015, 4(8): 814-818.
72 Zhao W F, He C, Nie C X, et al. Synthesis and characterization of ultrahigh ion-exchange capacity polymeric membranes[J]. Industrial & Engineering Chemistry Research, 2016, 55(36): 9667-9675.
73 Park A M, Turley F E, Wycisk R J, et al. Electrospun and cross-linked nanofiber composite anion exchange membranes[J]. Macromolecules, 2014, 47(1): 227-235.
74 Zeng L P, Liao Y C, Wang J C, et al. Construction of highly efficient ion channel within anion exchange membrane based on interpenetrating polymer network for H2/Air (CO2-free) alkaline fuel cell[J]. Journal of Power Sources, 2021, 486: 229377.
75 Zeng L P, He Q, Liao Y C, et al. Anion exchange membrane based on interpenetrating polymer network with ultrahigh ion conductivity and excellent stability for alkaline fuel cell[J]. Research, 2020, 2020: 4794706.
[1] 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467.
[2] 蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485.
[3] 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414.
[4] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[5] 李铁男, 赵碧丹, 赵鹏, 张永民, 王军武. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661.
[6] 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741.
[7] 王忠东, 朱春英, 马友光, 付涛涛. 并行微通道内液液两相流及介尺度效应[J]. 化工学报, 2022, 73(6): 2563-2572.
[8] 黄盼, 练成, 刘洪来. 基于模拟退火算法的真实多孔电极中热-质传递的研究[J]. 化工学报, 2022, 73(6): 2529-2542.
[9] 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697.
[10] 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495.
[11] 胡善伟, 刘新华. 气固流化系统多尺度跨流域EMMS建模[J]. 化工学报, 2022, 73(6): 2514-2528.
[12] 陈泉, 郑泽希, 李然, 孙其诚, 杨晖. 散斑能见度光谱法测量筒仓内颗粒流的颗粒温度[J]. 化工学报, 2022, 73(6): 2603-2611.
[13] 唐天琪, 何玉荣. 磁场对湿颗粒流化床系统中介尺度结构影响机制研究[J]. 化工学报, 2022, 73(6): 2636-2648.
[14] 牛犁, 刘梦溪, 王海北. 密相流化床中介尺度流动结构的流体力学特性研究[J]. 化工学报, 2022, 73(6): 2622-2635.
[15] 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!