化工学报 ›› 2023, Vol. 74 ›› Issue (2): 559-570.DOI: 10.11949/0438-1157.20221217
李雨萧1,2(), 王青月2, Ho Lim Khak2(), 李晓辉3, Erlita Mastan3, 彭博3(), 王文俊1,2,4()
收稿日期:
2022-09-06
修回日期:
2022-11-18
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
Ho Lim Khak,彭博,王文俊
作者简介:
李雨萧(1999 —)女,硕士研究生,liyuxiao@zju.edu.cn
基金资助:
Yuxiao LI1,2(), Qingyue WANG2, Khak Ho LIM2(), Xiaohui LI3, Erlita MASTAN3, Bo PENG3(), Wenjun WANG1,2,4()
Received:
2022-09-06
Revised:
2022-11-18
Online:
2023-02-05
Published:
2023-03-21
Contact:
Khak Ho LIM, Bo PENG, Wenjun WANG
摘要:
自由基聚合是一类重要的聚合反应,其反应动力学常数的获取对于聚合机理研究、聚合物链结构定制、反应过程调控都有着重要的意义。综述了自由基聚合中最重要的链增长和链终止反应速率常数的测定方法,着重介绍连续脉冲激光引发结合凝胶渗透色谱测定链增长反应速率常数、单脉冲-连续脉冲激光耦合结合近红外光谱与电子顺磁共振波谱测定链终止反应速率常数,涵盖了各方法的检测原理、要求和适用条件,讨论了增长自由基链长对链增长和链终止反应速率常数的影响。此外,对链增长和链终止反应速率常数检测方法的提升和新方法的开发进行了展望。
中图分类号:
李雨萧, 王青月, Ho Lim Khak, 李晓辉, Erlita Mastan, 彭博, 王文俊. 自由基聚合反应动力学常数测定技术[J]. 化工学报, 2023, 74(2): 559-570.
Yuxiao LI, Qingyue WANG, Khak Ho LIM, Xiaohui LI, Erlita MASTAN, Bo PENG, Wenjun WANG. Characterization technique for kinetic coefficients of free radical polymerization[J]. CIESC Journal, 2023, 74(2): 559-570.
图1 连续脉冲激光引发聚合聚合物对数分子量质量分布及其微分曲线[13]
Fig.1 Representative logarithmic molecular mass distribution and its corresponding derivative curve of the PLP polymer[13]
单体 | 本体/溶液聚合 | 文献 |
---|---|---|
苯乙烯 | 本体,苯甲醇, N-甲基吡咯烷酮,苯甲醚,二甲基甲酰胺,异丁酸甲酯,甲苯,苯,二甲基亚砜,溴化苯,环己烷,均三甲基苯,二氯乙烷,乙腈,二氧化碳,丙烯腈 | [ |
4-甲基苯乙烯 | 本体 | [ |
4-氟苯乙烯 | 本体 | [ |
4-氯苯乙烯 | 本体 | [ |
4-溴代苯乙烯 | 本体 | [ |
4-甲氧基苯乙烯 | 本体 | [ |
丙烯腈 | 碳酸丙烯酯 | [ |
甲基丙烯酸甲酯 | 本体, 丙烯腈,苯甲醚,苯甲醇,苯,溴化苯,二氧化碳,环己烷,二甲基亚砜,二甲基甲酰胺,甲基乙基甲酮,乙醇,甲醇,均三甲基苯,异丁酸甲酯,N-甲基吡咯烷酮,甲苯,二氯乙烷 | [ |
甲基丙烯酸乙酯 | 本体 | [ |
甲基丙烯酸丁酯 | 本体,2-庚酮 | [ |
i-甲基丙烯酸丁酯 | 本体 | [ |
甲基丙烯酸异辛酯 | 本体 | [ |
i-甲基丙烯酸异癸酯 | 本体 | [ |
甲基丙烯酸月桂酯 | 本体,2-庚酮,乙酸辛酯 | [ |
甲基丙烯酸苄基酯 | 本体 | [ |
甲基丙烯酸环己酯 | 本体,2-庚酮,乙酸辛酯 | [ |
i-甲基丙烯酸冰片酯 | 本体 | [ |
甲基丙烯酸羟乙酯 | 本体 | [ |
甲基丙烯酸羟丙酯 | 本体 | [ |
甲基丙烯酸缩水甘油酯 | 本体 | [ |
甲基丙烯酰氧丙基三(三甲基硅氧烷基)硅烷 | 本体 | [ |
甲基丙烯腈 | 本体 | [ |
非电离甲基丙烯酸 | 本体,甲醇,甲苯,四氢呋喃,乙酸,水 | [ |
丙烯酸甲酯 | 本体,链长依赖性链增长反应速率常数 | [ |
丙烯酸丁酯 | 本体,四氢呋喃,二氧化碳 | [ |
丙烯酸丁酯二聚物 | 本体 | [ |
2-乙基己基丙烯酸甲酯 | 本体 | [ |
丙烯酸十二烷基酯 | 本体 | [ |
N-异丙基丙烯酰胺 | 水 | [ |
丙烯酸 | 水 | [ |
丙烯酰胺 | 水 | [ |
乙酸乙烯酯 | 本体,叔丁醇,二氧化碳 | [ |
新癸酸乙烯基酯 | 本体 | [ |
氯丁二烯 | 本体 | [ |
1,3-丁二烯 | 氯苯 | [ |
甲基丙烯酸α-羟乙酯 | 苯,丁酮,氯苯,氯仿,环己烷,乙醇,二氯甲烷,乙酸乙酯,四氢呋喃,1-戊醇,丙醇,甲苯,二甲苯,乙苯 | [ |
N-乙烯基吡咯烷酮 | 水 | [ |
衣康酸二甲酯 | 水 | [ |
氨基甲酸羟丙酯丙烯酸酯 | 本体 | [ |
甲基丙烯酸亚乙基脲乙氧基酯 | 本体 | [ |
2-(乙基(苯基)氨基)甲基乙酸乙酯 | 本体 | [ |
2-正吗啉丙烯酸乙酯 | 本体 | [ |
2-(1-哌啶基)甲基丙烯酸乙酯 | 本体 | [ |
n-戊基丙烯酸甲酯 | 本体,甲苯 | [ |
苯乙烯和甲基丙烯酸缩水甘油酯共聚 | 本体 | [ |
甲基丙烯酸羟乙酯和甲基丙烯酸丁酯共聚 | 本体,二甲苯,二甲基甲酰胺,正丁醇 | [ |
丙烯酸甲酯和N-叔丁基丙烯酰胺共聚 | 乙醇水溶液 | [ |
表1 PLP-SEC测定的链增长反应速率常数的单体及条件
Table 1 The monomers and related FRP condition with propagation rate coefficients measured by the PLP-SEC method
单体 | 本体/溶液聚合 | 文献 |
---|---|---|
苯乙烯 | 本体,苯甲醇, N-甲基吡咯烷酮,苯甲醚,二甲基甲酰胺,异丁酸甲酯,甲苯,苯,二甲基亚砜,溴化苯,环己烷,均三甲基苯,二氯乙烷,乙腈,二氧化碳,丙烯腈 | [ |
4-甲基苯乙烯 | 本体 | [ |
4-氟苯乙烯 | 本体 | [ |
4-氯苯乙烯 | 本体 | [ |
4-溴代苯乙烯 | 本体 | [ |
4-甲氧基苯乙烯 | 本体 | [ |
丙烯腈 | 碳酸丙烯酯 | [ |
甲基丙烯酸甲酯 | 本体, 丙烯腈,苯甲醚,苯甲醇,苯,溴化苯,二氧化碳,环己烷,二甲基亚砜,二甲基甲酰胺,甲基乙基甲酮,乙醇,甲醇,均三甲基苯,异丁酸甲酯,N-甲基吡咯烷酮,甲苯,二氯乙烷 | [ |
甲基丙烯酸乙酯 | 本体 | [ |
甲基丙烯酸丁酯 | 本体,2-庚酮 | [ |
i-甲基丙烯酸丁酯 | 本体 | [ |
甲基丙烯酸异辛酯 | 本体 | [ |
i-甲基丙烯酸异癸酯 | 本体 | [ |
甲基丙烯酸月桂酯 | 本体,2-庚酮,乙酸辛酯 | [ |
甲基丙烯酸苄基酯 | 本体 | [ |
甲基丙烯酸环己酯 | 本体,2-庚酮,乙酸辛酯 | [ |
i-甲基丙烯酸冰片酯 | 本体 | [ |
甲基丙烯酸羟乙酯 | 本体 | [ |
甲基丙烯酸羟丙酯 | 本体 | [ |
甲基丙烯酸缩水甘油酯 | 本体 | [ |
甲基丙烯酰氧丙基三(三甲基硅氧烷基)硅烷 | 本体 | [ |
甲基丙烯腈 | 本体 | [ |
非电离甲基丙烯酸 | 本体,甲醇,甲苯,四氢呋喃,乙酸,水 | [ |
丙烯酸甲酯 | 本体,链长依赖性链增长反应速率常数 | [ |
丙烯酸丁酯 | 本体,四氢呋喃,二氧化碳 | [ |
丙烯酸丁酯二聚物 | 本体 | [ |
2-乙基己基丙烯酸甲酯 | 本体 | [ |
丙烯酸十二烷基酯 | 本体 | [ |
N-异丙基丙烯酰胺 | 水 | [ |
丙烯酸 | 水 | [ |
丙烯酰胺 | 水 | [ |
乙酸乙烯酯 | 本体,叔丁醇,二氧化碳 | [ |
新癸酸乙烯基酯 | 本体 | [ |
氯丁二烯 | 本体 | [ |
1,3-丁二烯 | 氯苯 | [ |
甲基丙烯酸α-羟乙酯 | 苯,丁酮,氯苯,氯仿,环己烷,乙醇,二氯甲烷,乙酸乙酯,四氢呋喃,1-戊醇,丙醇,甲苯,二甲苯,乙苯 | [ |
N-乙烯基吡咯烷酮 | 水 | [ |
衣康酸二甲酯 | 水 | [ |
氨基甲酸羟丙酯丙烯酸酯 | 本体 | [ |
甲基丙烯酸亚乙基脲乙氧基酯 | 本体 | [ |
2-(乙基(苯基)氨基)甲基乙酸乙酯 | 本体 | [ |
2-正吗啉丙烯酸乙酯 | 本体 | [ |
2-(1-哌啶基)甲基丙烯酸乙酯 | 本体 | [ |
n-戊基丙烯酸甲酯 | 本体,甲苯 | [ |
苯乙烯和甲基丙烯酸缩水甘油酯共聚 | 本体 | [ |
甲基丙烯酸羟乙酯和甲基丙烯酸丁酯共聚 | 本体,二甲苯,二甲基甲酰胺,正丁醇 | [ |
丙烯酸甲酯和N-叔丁基丙烯酰胺共聚 | 乙醇水溶液 | [ |
单体 | 本体/溶液聚合 | 文献 |
---|---|---|
衣康酸二丁酯 | 本体 | [ |
丙烯酸甲酯 | 本体,甲苯 | [ |
丙烯酸十二烷基酯 | 本体,甲苯 | [ |
甲基丙烯酸三甲氨基乙酯 | 本体,水 | [ |
丙烯酸三甲氨基乙酯 | 水 | [ |
苯乙烯 | 本体 | [ |
丙烯酰胺 | 水 | [ |
甲基丙烯酸钠酯 | 水 | [ |
表2 SP-PLP-EPR测定的链增长反应速率常数的单体和条件
Table 2 The monomers and related FRP condition with propagation rate coefficients measured by the SP-PLP-EPR method
单体 | 本体/溶液聚合 | 文献 |
---|---|---|
衣康酸二丁酯 | 本体 | [ |
丙烯酸甲酯 | 本体,甲苯 | [ |
丙烯酸十二烷基酯 | 本体,甲苯 | [ |
甲基丙烯酸三甲氨基乙酯 | 本体,水 | [ |
丙烯酸三甲氨基乙酯 | 水 | [ |
苯乙烯 | 本体 | [ |
丙烯酰胺 | 水 | [ |
甲基丙烯酸钠酯 | 水 | [ |
1 | Dietrich B. Origins and development of initiation of free radical polymerization processes[J]. International Journal of Polymer Science, 2009, 2009: 893234. |
2 | Braunecker W A, Matyjaszewski K. Controlled/living radical polymerization: features, developments, and perspectives[J]. Progress in Polymer Science, 2007, 32: 93-146. |
3 | 潘祖仁. 高分子化学[M]. 北京: 化学工业出版社, 2011. |
Pan Z R. Polymer Chemistry[M]. Beijing: Chemical Industry Press, 2011. | |
4 | Olaj O F, Bitai I, Hinkelmann F. The laser-flash-initiated polymerization as a tool of evaluating (individual) kinetic constants of free-radical polymerization(part 2): The direct determination of the rate constant of chain propagation[J]. Die Makromolekulare Chemie, 1987, 188: 1689-1702. |
5 | Kattner H, Drawe P, Buback M. Novel access to propagation rate coefficients of radical polymerization by the SP-PLP-EPR method[J]. Macromolecular Chemistry and Physics, 2015, 216(16): 1737-1745. |
6 | Kowollika C B, Buback M, Egorov M, et al. Critically evaluated termination rate coefficients for free-radical polymerization: experimental methods[J]. Progress in Polymer Science, 2005, 30(6): 605-643. |
7 | Kuchta F D, van Herk A M, German A L. Propagation kinetics of acrylic and methacrylic acid in water and organic solvents studied by pulsed-laser polymerization[J]. Macromolecules, 2000, 33(10): 3641-3649. |
8 | Buback M, Gilbert R G, Russell G T, et al. Consistent values of rate parameters in free radical polymerization system(part Ⅱ): Outstanding dilemmas and recommendations[J]. Journal of Polymer Science, 1992, 30(5): 851-863. |
9 | O'Driscoll K F, Mahabadi H K. Spatially intermittent polymerization[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1976, 14(4): 869-881. |
10 | Buback M, Gilbert R G, Hutchinson R A, et al. Critically evaluated rate coefficients for free radical polymerization(part 1): Propagation rate coefficient for styrene[J]. Macromolecular Chemistry and Physics, 1995, 196(10): 3267-3280. |
11 | Beuermann S. Critically evaluated propagation rate coefficients in free radical polymerizations(part 3): Methacrylates with cyclic ester groups[J]. Pure and Applied Chemistry, 2003, 75(8): 1091-1096. |
12 | Beuermann S, Buback M, Davis T P, et al. Critically evaluated rate coefficients for free-radical polymerization(part 4): Propagation rate coefficients for methacrylates with cyclic ester groups[J]. Macromolecular Chemistry and Physics, 2003, 204(10): 1338-1350. |
13 | Beuermann S, Buback M. Rate coefficients of free radical polymerization deduced from pulsed laser experiments[J]. Progress in Polymer Science, 2002, 27(2): 191-254. |
14 | Beuermann S, Buback M, Davis T P, et al. Critically evaluated rate coefficients for free-radical polymerization(part 2): Propagation rate coefficients for methyl methacrylate[J]. Macromolecular Chemistry and Physics, 1997, 198(5): 1545-1560. |
15 | Buback M, Schweer J. Conversion and chain-length dependence of rate coefficients in free-radical polymerization[J]. Zeitschrift für Physikalische Chemie, 1989, 161: 153-165. |
16 | Gilbert R G, Napper D H. The direct determination of kinetic parameters in emulsion polymerization systems[J]. Journal of Macromolecular Science, Part C: Polymer Reviews, 1983, 23(1): 127-186. |
17 | Bresler S E, Kozbekov E N, Shadrin V N. Study of radical polymerization by means of ESR(part 2): Homogeneous polymerization of methyl methacrylate and vinyl acetate[J]. Macromolecular Chemistry and Physics, 1974, 175(10): 2875-2880. |
18 | Kubota N, Kajiwara A, Zetterlund P B, et al. Determination of the propagation rate coefficient of vinly pivalate based on EPR quantification of the propagation radical concentration[J]. Macromolecular Chemistry and Physics, 2007, 208(22): 2403-2411. |
19 | Shen J C, Tian Y, Zeng Y G, et al. ESR study of the propagating rate constant and radical concentration of bulk polymerization of methyl methacrylate[J]. Die Makromolekulare Chemie, Rapid Communications, 1987, 8: 615-620. |
20 | Garrett R W, Hill D J T, O'Donnell J H, et al. Application of ESR spectroscopy to the kinetics of free radical polymerization of methyl methacrylate in bulk to high conversion[J]. Polymer Bulletin, 1989, 22: 611-616. |
21 | Carswell T G, Hill D J T, Hunter D S, et al. Simultaneous measurement by ESR spectroscopy of monomer conversion and radical concentration during polymerization for determination of kinetic parameters[J]. European Polymer Journal, 1990, 26(15): 541-544. |
22 | Kamachi M J. Search for highly resolved electron spin resonance spectra of the transient radical in radical polymerization[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2002, 40(3): 269-285. |
23 | Zammit M D, Coote M L, Davis T P, et al. Effect of the ester-side-chain on the propagation kinetics of alkyl methacrylates—an entropic or enthalpic effect?[J]. Macromolecules, 1998, 31(4): 955-963. |
24 | Zammit M D, Davis T P, Willett G D, et al. The effect of solvent on the homo-propagation rate coefficients of styrene and methyl methacrylate[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1997, 35(11): 2311-2321. |
25 | van Herk A M, Manders B G, Canelas D A, et al. Propagation rate coefficients of styrene and methyl methacrylate in supercritical CO2 [J]. Macromolecules, 1997, 30(16): 4780-4782. |
26 | Olaj O F, Bitai I S. Solvent effects on the rate constant of chain propagation in free radical polymerization[J]. Monatshefte für Chemie/Chemical Monthly, 1999, 130: 731-740. |
27 | O'Driscoll K F, Monteiro M J, Klumperman B. The effect of benzyl alcohol on pulsed laser polymerization of styrene and methylmethacrylate[J]. Journal of Polymer Science. Polymer Chemistry Edition, 2000, 35(3): 515-520. |
28 | Aleksandrov H P, Genkin V N, Kitai M S, et al. Kinetics of laser-initiated polymerization and molecular-weight distribution of the resultant polymer[J]. Soviet Journal of Quantum Electronics, 1977, 7(5): 547-550. |
29 | Beuermann S, Buback M, Davis T P, et al. Critically evaluated rate coefficients for free radical polymerization(part 2): Propagation rate coefficients for methyl methacrylate[J]. Macromolecular Chemistry and Physics, 1997, 198(5):1545-1560. |
30 | Beuermann S, Buback M, Davis T P, et al. Critically evaluated rate coefficients for free-radical polymerization(part 3): Propagation rate coefficients for alkyl methacrylates[J]. Macromolecular Chemistry and Physics, 2000, 201: 1355-1364. |
31 | Asua J M, Beuermann S, Buback M, et al. Critically evaluated rate coefficients for free-radical polymerization(part 5): Propagation rate coefficient for butyl acrylate[J]. Macromolecular Chemistry and Physics, 2004, 205(16): 2151-2160. |
32 | Beuermann S, Buback M, Hesse P, et al. Critically evaluated rate coefficients for free-radical polymerization(part 6): Propagation rate coefficient of methacrylic acid in aqueous solution[J]. Pure and Applied Chemistry, 2007, 79(8): 1463-1469. |
33 | Hutchinson R A, Aronson M T, Richards J R. Analysis of pulsed-laser-generated molecular weight distributions for the determination of propagation rate coefficients[J]. Macromolecules, 1993, 26(24): 6410-6415. |
34 | Drawe P, Buback M. The PLP-SEC method: perspectives and limitations[J]. Macromolecular Theory and Simulationa, 2016, 25(1): 74-84. |
35 | Beuermann S, Paquet D A, McMinn J, et al. Determination of free-radical propagation rate coefficients of butyl, 2-ethylhexyl, and dodecyl acrylates by pulsed-laser polymerization[J]. Macromolecules, 1996, 29(12): 4206-4215. |
36 | Sarnecki J, Schweer J. Conditions for the determination of precise and accurate free-radical propagation rate coefficients from pulsed-laser-made polymer[J]. Macromolecules, 1995, 28(12): 4080-4088. |
37 | Deibert S, Bandermann F, Schweer J, et al. Propagation rate coefficient of free radical polymerization of 1,3-butadiene[J]. Die Makromolekulare Chemie, Rapid Communications, 1992, 13(7): 351-355. |
38 | Lacík I, Beuermann S, Buback M. Aqueous phase size exclusion chromatography used for PLP-SEC studies into free radical propagation rate of acrylic acid in aqueous solution[J]. Macromolecules, 2001, 34(18): 6224-6228. |
39 | Kuchta F D, van Herk A M, German A L. Propagation kinetics of acrylic and methacrylic acid in water and organic solvents studied by pulsed laser polymerization[J]. Macromolecules, 2000, 33(10): 3641-3649. |
40 | Beuermann S, Buback M, Hesse P, et al. Free radical propagation rate coefficient of nonionized methacrylic acid in aqueous solution from low monomer concentrations to bulk polymerization[J]. Macromolecules, 2006, 39(1): 184-193. |
41 | Lacík I, Chovancova A, Uhelska L, et al. PLP-SEC studies into the propagation rate coefficient of acrylamide radical polymerization in aqueous solution[J]. Macromolecules, 2016, 49(9): 3244-3253. |
42 | Meiser W, Buback M, Ries O, et al. EPR study into cross-termination and fragmentation with the phenylethyl-phenylethyl dithiobenzoate RAFT model system[J]. Macromolecular Chemistry and Physics, 2013, 214(8): 924-933. |
43 | Lacík I, Beuermann S, Buback M. PLP-SEC study into the free-radical propagation rate coefficients of partially and fully ionized acrylic acid in aqueous solution[J]. Macromolecular Chemistry and Physics, 2004, 205(8): 1080-1087. |
44 | Beuermann S, Buback M, Hesse P, et al. Propagation kinetics of free-radical methacrylic acid polymerization in aqueous solution. The effect of concentration and degree of ionization[J]. Macromolecular Symposia, 2007, 248(1): 23-32. |
45 | Buback M. Propagation kinetics in radical polymerization studied via pulsed laser techniques[J]. Macromolecular Symposia, 2009, 275/276(1): 90-101. |
46 | Coote M L, Davis T P. Propagation kinetics of para-subsitituted styrenes: a test of the applicability of the Hammett relationship to free radical polymerization[J]. Macromolecules, 1999, 32(13): 4290-4298. |
47 | Coote M L, Davis T P. Propagation rate coefficients for styrene solution polymerization in dimethyl formamide and acetonitrile[J]. European Polymer Journal, 2000, 36(11): 2423-2427. |
48 | Junkers T, Koo S P S, Barner-Kowollik C. Determination of the propagation rate coefficient of acrylonitrile[J]. Polymer Chemistry, 2010, 1(4): 438-441. |
49 | Beuermann S, Buback M, Russell G T. Variation with pressure of the propagation rate coefficient in free radical polymerization of methyl methacrylate[J]. Macromolecular Rapid Communications, 1994, 15(4): 351-355. |
50 | Beuermann S, Buback M, Russell G T. Rate of propagation in free radical polymerization of methyl methacrylate in solution[J]. Macromolecular Rapid Communications, 1994, 15(8): 647-653. |
51 | Quadir M A, DeSimone J M, van Herk A M, et al. Pulsed-laser polymerization of methyl methacrylate in liquid and supercritical carbon dioxide[J]. Macromolecules, 1998, 31(19): 6481-6485. |
52 | Beuermann S, Buback M, Schmaltz C, et al. Determination of free radical propagation rate coefficients for methyl methacrylate and butyl acrylate homopolymerizations in fluid CO2 [J]. Macromolecular Chemistry and Physics, 1998, 199(6): 1209-1216. |
53 | Morrison B R, Piton M C, Winnik M A, et al. Solvent effects on the propagation rate coefficient for free radical polymerization[J]. Macromolecules, 1993, 26: 4368-4372. |
54 | Hutchinson R A, Paquet D A, McMinn J H, et al. Measurement of free radical propagation rate coefficients for ethyl, butyl and isobutyl methacrylates by pulsed laser polymerization[J]. Macromolecules, 1995, 28(11): 4023-4028. |
55 | Buback M, Geers U, Kurz C H, et al. Propagation rate coefficients in free radical homopolymerizations of butyl methacrylate and dodecyl methacrylate[J]. Macromolecular Chemistry and Physics, 1997, 198(11): 3451-3464. |
56 | Hutchinson R A, Paquet D A, Beuermann S, et al. Investigation of methacrylate free radical depropagation kinetics by pulsed laser polymerization[J]. Industrial & Engineering Chemistry Research, 1998, 37(9): 3567-3574. |
57 | Hutchinson R A, Beuermann S, Paquet D A, et al. Determination of free radical propagation rate coefficients for alkyl methacrylates by pulsed laser polymerization[J]. Macromolecules, 1997, 30(12): 3490-3493. |
58 | Hutchinson R A, Beuermann S, Paquet D A, et al. Determination of free radical propagation rate coefficients for cycloalkyl and functional methacrylates by pulsed laser polymerization[J]. Macromolecules, 1998, 31(5): 1542-1547. |
59 | Buback M, Kurz C H. Free radical propagation rate coefficients for cyclohexyl methacrylate, glycidyl methacrylate and 2-hydroxyethyl methacrylate homopolymerization[J]. Macromolecular Chemistry and Physics, 1998, 199: 2301-2310. |
60 | Wang W, Hutchinson R A. PLP/SEC/NMR study of free radical copolymerization of styrene and glycidyl methacrylate[J]. Macromolecules, 2008, 41(23): 9011-9018. |
61 | Muratore L M, Coote M L, Davis T P. Determination of the propagation rate coefficient for 3-[tris(trimethylsilyloxy)silyl] propyl methacrylate by pulsed-laser polymerization[J]. Polymer, 2000, 41(4): 1441-1447. |
62 | Shipp D A, Smith T A, Solomon D H, et al. Evaluation of propagation rate constants for the free radical polymerization of methacrylonitrile by pulsed laser photolysis[J]. Macromolecular Rapid Communications, 1995, 16: 837-844. |
63 | Buback M, Kurz C H, Schmaltz C. Pressure dependence of propagation rate coefficients in free radical homopolymerizations of methyl acrylate and dodecyl acrylate[J]. Macromolecular Rapid Communications, 1998, 199(8): 1721-1727. |
64 | Nikitin A N, Dusicka E, Lacík L, et al. Chain-length dependence of the propagation rate coefficient for methyl acrylate polymerization at 25 degrees C investigated by the PLP-SEC method[J]. Polymer Chemistry, 2022, 13(21): 3053-3062. |
65 | Beuermann S, Paquet D A, McMinn J, et al. Determination of free-radical propagation rate coefficients of butyl, 2-ethylhexyl, and dodecyl acrylates by pulsed-laser polymerization[J]. Macromolecules, 1996, 29(12): 4206-4215. |
66 | Lyons R A, Hutovic J, Piton M C, et al. Pulsed laser polymerization measurements of the propagation rate coefficient for butyl acrylate[J]. Macromolecules, 1996, 29(6): 1918-1927. |
67 | Beuermann S, Buback M, Schmaltz C. Pressure and temperature dependence of butyl acrylate propagation rate coefficients in fluid CO2 [J]. Macromolecules, 1998, 31(23): 8069-8074. |
68 | Nikitin A N, Hutchinson R A, Buback M, et al. Determination of intramolecular chain transfer and midchain radical propagation rate coefficients for butyl acrylate by pulsed laser polymerization[J]. Macromolecules, 2007, 40(24): 8631-8641. |
69 | Buback M, Junkers T, Muller M. Free radical propagation and termination kinetics of the butyl acrylate dimer studied by pulsed laser polymerization techniques[J]. Polymer, 2009, 50(14): 3111-3118. |
70 | Ganachaud F, Balic R, Monteiro M J, et al. Propagation rate coefficient of poly(N-isopropylacrylamide) in water below its lower critical solution temperature[J]. Macromolecules, 2000, 33(23): 8589-8596. |
71 | Hutchinson R A, Richards J R, Aronson M T. Determination of propagation rate coefficients by pulsed-laser polymerization for systems with rapid chain growth: vinyl acetate[J]. Macromolecules, 1994, 27(16): 4530-4537. |
72 | Hutchinson R A, Paquet D A, McMinn J H. The application of pulsed-laser methods for the determination of free-radical polymerization rate coefficients[C]//5th International Workshop on Polymer Reaction Engineering (DECHEMA Monographs 131). VCH Publishers, 1995. |
73 | Beuermann S, Buback M, Nelke D. Pressure dependence of the propagation rate coefficient k p for vinyl acetate polymerizations in bulk and in solution of fluid CO2 [J]. Macromolecules, 2001, 34(19): 6637-6640. |
74 | Balic R, Gilbert R G, Zammit M D, et al. Propagation rate coefficient of vinyl neo-decanoate by pulsed laser polymerization[J]. Macromolecules, 1997, 30(13): 3775-3780. |
75 | Morrison D A, Davis T P. Studies on the propagation reaction in the free radical polymerization of ethyl α-hydroxymethacrylate[J]. Macromolec Chemistry and Physics, 2000, 201(16): 2128-2137. |
76 | Stach M, Lacík I, Jr D C, et al. Propagation rate coefficient for free radical polymerization of N-vinyl pyrrolidone in aqueous solution obtained by PLP-SEC[J]. Macromolecules, 2008, 41: 5174-5185. |
77 | Yee L H, Coote M L, Chaplin R P, et al. Determination of propagation rate coefficients for an α-substituted acrylic ester: pulsed laser polymerization of dimethyl itaconate[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2000, 38(12): 2192-2200. |
78 | Haehnel A P, Stach M, Chpvancova A, et al. Methacrylic monomers with heteroatom containing ester side chains: a systematic PLP-SEC and polymerization study[J]. Polymer Chemistry, 2014, 5: 862-873. |
79 | Kockler K B, Fleischhaker F, Barner-Kowollik C. Investigating the propagation kinetics of a novel class of nitrogen-containing methacrylates via PLP-SEC[J]. Polymer Chemistry, 2016, 7: 4342-4351. |
80 | Nitschke A, Riemann L, Kollenbach L, et al. Investigation into the kinetics of n-pentyl methacylate radical polymerization[J]. Macromolec Chemistry and Physics, 2020, 221: 1900345. |
81 | Liang K, Rooney T R, Hutchinson R A. Solvent effects on kinetics of 2-hydroxyethyl methacrylate semibatch radical copolymerization[J]. Industrial & Engineering Chemistry Research, 2014, 53(18): 7296-7304. |
82 | Refai I, Agboluaje M, Hutchinson R A. Radical copolymerization kinetics of N-tert-butyl acrylamide and methyl acrylate in polar media[J]. Polymer Chemistry, 2022, 13: 2036-2047. |
83 | Buback M, Hippler H, Schweer J, et al. Time-resolved study of laser-induced high-pressure ethylene polymerization[J]. Die Makromolekulare Chemie, Rapid Communications, 1986, 7(5): 261-265. |
84 | Buback M, Egorov M, Junkers T, et al. Free radical termination kinetics studied using a novel SP-PLP-ESR technique[J]. Macromolecular Rapid Communications, 2004, 25(10): 1004-1009. |
85 | Yamada B, Westmoreland D G, Kobatake S, et al. ESR spectroscopic studies of radical polymerization[J]. Progress in Polymer Science, 1999, 24(4): 565-630. |
86 | Buback M, Scheroeder H, Kattner H. Detailed kinetic and mechanistic insight into radical polymerization by spectroscopic techniques[J]. Macromolecules, 2016, 49(9): 3193-3213. |
87 | Kattner H, Buback M. Propagation and chain-length-dependent termination rate coefficients deduced from a single SP-PLP-EPR experiment[J]. Macromolecules, 2016, 49(10): 3716-3722. |
88 | Kattner H, Buback M. Termination, propagation, and transfer kinetics of midchain radicals in methyl acrylate and dodecyl acrylate homopolymerization[J]. Macromolecules, 2018, 51(1): 25-33. |
89 | Barth J, Buback M, Hesse P, et al. EPR analysis of n-butyl acrylate radical polymerization[J]. Macromolecular Rapid Communications, 2009, 30(23): 1969-1974. |
90 | Moad G, Rizzardo E, Thang S H. Living radical polymerization by the RAFT process[J]. Australian Journal of Chemistry, 2005, 58(6): 379-410. |
91 | Sidoruk A, Buback M, Meiser W. Kinetics of dithiobenzoate-mediated methyl methacrylate polymerization[J]. Macromolecular Chemical and Physics, 2013, 214(15): 1738-1748. |
92 | Meiser W, Buback M, Sidoruk A. EPR Investigations into the kinetics of trithiocarbonate-mediated RAFT-polymerization of butyl acrylate[J]. Macromolecular Chemical and Physics, 2013, 214(18): 2108-2114. |
93 | Meiser W, Buback M. Assessing the RAFT equilibrium constant via model systems: an EPR study[J]. Macromolecular Rapid Communications, 2011, 32(18): 1490-1494. |
94 | Meiser W, Barth J, Buback M, et al. EPR measurement of fragmentation kinetics in dithiobenzoate-mediated RAFT polymerization[J]. Macromolecules, 2011, 44(8): 2474-2480. |
95 | Zhou Y N, Li J J, Wang T T, et al. Precision polymer synthesis by controlled radical polymerization: fusing the progress from polymer chemistry and reaction engineering[J]. Progress in Polymer Science, 2022, 130: 101555. |
96 | Soerensen N, Barth J, Buback M, et al. SP-PLP-EPR measurement of ATRP deactivation rate[J]. Macromolecules, 2012, 45(9): 3797-3801. |
97 | Schroeder H, Buback M. SP-PLP-EPR measurement of iron-mediated radical termination in ATRP[J]. Macromolecules, 2014, 47(19): 6645-6651. |
98 | Schroeder H, Buback M. SP-PLP-EPR measurement of iron-mediated ATRP deactivation rate[J]. Macromolecules, 2015, 48(17): 6108-6113. |
99 | Kattner H. Radical polymerization kinetics of non-ionized and fully-ionized monomers studied by pulsed-laser EPR[D]. Göttingen: der Georg-August Universität, 2016. |
100 | Schrooten J. Investigation into the propagation and termination kinetics of the radical polymerization of polar monomers in aqueous solution[D]. Göttingen: der Georg-August-Universität, 2012. |
101 | Barth J, Buback M, Hesse P, et al. Chain-length-dependent termination in n-butyl methacrylate and tert-butyl methacrylate bulk homopolymerizations studied via SP-PLP-ESR[J]. Macromolecules, 2009, 42(2): 481-488. |
102 | Kattner H, Buback M. Chain length dependent termination of styrene bulk polymerization up to high degrees of monomer conversion[J]. Macromolecules, 2017, 50(14): 5308-5314. |
103 | Kattner H, Drawe P, Buback M. Chain length dependent termination of sodium methacrylate polymerization in aqueous solution studied by SP-PLP-EPR[J]. Macromolecules, 2017, 50(4): 1386-1393. |
104 | Kattner H, Buback M. Chain length dependent termination of styrene bulk homopolymerization studied by SP-PLP-EPR[J]. Macromolecules, 2015, 48(2): 309-315. |
105 | Kattner H, Buback M. Detailed investigations into radical polymerization kinetics by highly time-resolved SP-PLP-EPR[J]. Macromolecular Symposia, 2013, 333(1): 11-23. |
106 | Smith G B, Russell G T, Heuts J P A. Termination in dilute-solution free radical polymerization: a composite model[J]. Macromolecular Theory and Simulations, 2003, 12(5): 299-314. |
107 | Barth J, Buback M, Russell G T, et al. Chain length dependent termination in radical polymerization of acrylates[J]. Macromolecular Chemistry and Physics, 2011, 212(13): 1366-1378. |
108 | Johnston-Hall G, Theis A, Monteiro J. Accessing chain length dependent termination rate coefficients of methyl methacrylate (MMA) via the reversible addition fragmentation chain transfer (RAFT) process[J]. Macromolecular Chemistry and Physics, 2005, 206(20): 2047-2053. |
109 | Johnston H, Monteiro M J. Bimolecular radical termination: new perspectives and insight[J]. Journal of Polymer Science, Part A: Polymer chemistry, 2008, 46(10): 3155-3173. |
110 | Johnston-Hall, Monteiro M J. Diffusion controlled termination of linear polystyrene radicals in linear, 4-arm, and 6-arm star polymer matrices in dilute, semidilute, and concentrated solution conditions[J]. Macromolecules, 2008, 41(3): 717-736. |
111 | Friedman B, O'Shaughnessy B. Kinetics of intermolecular reactions in dilute polymer solutions and unentangled melts[J]. Macromolecules, 1993, 26(21): 5726-5739. |
112 | Friedman B, O'Shaughnessy B. Theory of intramolecular reactions in polymeric liquids[J]. Macromolecules, 1993, 26(18): 4888-4898. |
113 | Khokhlov A R. Influence of excluded volume effect on the rates of chemically controlled polymer-polymer reactions[J]. Die Makromolekulare Chemie, Rapid Communications, 1981, 2: 633-636. |
114 | Boukaftane C, van Herk A M. PLP and MALDI-ToF determination of propagation rate coefficients of fast-polymerizing acrylates with heterocyclic side-chains: tetrahydrofurfuryl acrylate and (R)-alpha-acryloyloxy-beta, beta-dimethyl-gamma-butyrolactone[J]. Macromolecular Chemistry and Physics, 2011, 212(1): 96-101. |
115 | Shi Y J, Yu M X, Liu J, et al. Quantitative structure-property relationship model for predicting the propagation rate coefficient in free radical polymerization[J]. Macromolecules, 2022, 55(21): 9397-9410. |
[1] | 许超群, 俞娟, 范一民, 王基夫, 储富祥. 原子转移自由基聚合法接枝改性纳米纤维素及其功能化应用[J]. 化工学报, 2022, 73(3): 1022-1043. |
[2] | 郑哲楠, 高翔, 罗英武, 黄杰. 紫外光交联法制备全固态聚合物电解质[J]. 化工学报, 2022, 73(1): 441-450. |
[3] | 秦统, 奚桢浩, 赵玲, 袁渭康. 水溶性偶氮引发剂AIBA引发AN-MA-IA水相沉淀共聚合的研究[J]. 化工学报, 2021, 72(2): 1149-1155. |
[4] | 韩剑鹏,包永忠. 氯乙烯SET-DT悬浮聚合动力学和成粒过程的相互关系[J]. 化工学报, 2020, 71(2): 854-863. |
[5] | 姜紫耀, 刘宗浩, 白姝, 史清洪. 聚合物接枝脂肪酶的合成及其对酶活的影响[J]. 化工学报, 2019, 70(9): 3473-3482. |
[6] | 吴聂, 万里鹰, 李爱妹, 肖春平. 乙烯基对苯二甲酸类甲壳型液晶高分子的形状记忆性能[J]. 化工学报, 2018, 69(5): 2282-2289. |
[7] | 张素玲, 杨葳, 余林玲, 白姝, 孙彦, 史清洪. 共聚物接枝蛋白离子交换色谱介质制备及性能[J]. 化工学报, 2016, 67(9): 3738-3746. |
[8] | 任强, 黄春燕, 周琳楠, 李坚, 汪称意, 邓健, 方建波. 高固体分涂料用含羟基星形丙烯酸酯树脂的制备及性能[J]. 化工学报, 2015, 66(6): 2336-2342. |
[9] | 姜峰, 蒲万芬, 杜代军, 任强, 荆雪琪. 双尾型丙烯酰胺类疏水缔合共聚物的合成与表征[J]. 化工学报, 2015, 66(3): 1215-1220. |
[10] | 任强, 王莉莉, 李坚, 邓健, 方建波, 汪称意, 陈建海. DPE法合成双亲性丙烯酸酯嵌段共聚物及用于颜料分散剂的研究[J]. 化工学报, 2014, 65(6): 2378-2385. |
[11] | 杨长青, 郑涛, 郁晨晨, 周俊, 何冰芳, 刘晓宁. 触角状环氧链结构对固定化脂肪酶(YCJ01)酶活的影响[J]. 化工学报, 2014, 65(5): 1815-1820. |
[12] | 杨杰, 浦群, 包永忠. 基于偏氯乙烯嵌段共聚物的多级多孔炭的制备[J]. 化工学报, 2014, 65(1): 358-364. |
[13] | 罗英武. 复杂聚合物链结构的可控制备与新材料[J]. 化工学报, 2013, 64(2): 415-426. |
[14] | 李 鹏 飞. ATRP法制备环境响应型智能膜材料的研究进展[J]. 化工进展, 2013, 32(12): 2910-2915. |
[15] | 阳小宇1,吴新华1,赵阳锋1,2,黄启谷2. 星状羟基功能化聚苯乙烯/聚乙烯两嵌段共聚物的合成[J]. 化工进展, 2013, 32(07): 1608-1612. |
阅读次数 | |||||||||||||||||||||||||||||
全文 178
|
|
||||||||||||||||||||||||||||
摘要 392
|
|
||||||||||||||||||||||||||||