化工学报 ›› 2023, Vol. 74 ›› Issue (2): 546-558.DOI: 10.11949/0438-1157.20221091
项星宇(), 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛()
收稿日期:
2022-08-01
修回日期:
2022-09-16
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
付涛涛
作者简介:
项星宇(1998—),女,硕士研究生,xiang2021_@ tju.edu.cn
基金资助:
Xingyu XIANG(), Zhongdong WANG, Yanpeng DONG, Shouchuan LI, Chunying ZHU, Youguang MA, Taotao FU()
Received:
2022-08-01
Revised:
2022-09-16
Online:
2023-02-05
Published:
2023-03-21
Contact:
Taotao FU
摘要:
屈服应力型流体(YSFs)是一种典型的非牛顿流体,因其丰富的流变特性被广泛关注。屈服应力是高浓度的粒子分散系统和凝胶状物质(多相乳液、微胶囊、3D打印复杂结构、药物输送凝胶等)的基本特征。本文对微通道内简单屈服应力型流体的流动特征和流变行为,及其流变性对多相流系统的影响进行了综述,剖析了受限空间内流体流动与流体流变性,及多相流动力学和界面现象的耦合机制,并对亟需推进的研究方向进行了展望。为微通道内屈服应力型流体的数值模拟、实验研究和应用提供参考。
中图分类号:
项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558.
Xingyu XIANG, Zhongdong WANG, Yanpeng DONG, Shouchuan LI, Chunying ZHU, Youguang MA, Taotao FU. Progress on rheological properties and multiphase flow of yield stress fluids in microchannels[J]. CIESC Journal, 2023, 74(2): 546-558.
图3 乳液 A(油体积分数Φ = 75%)的速度剖面经过了滑移速度校正(虚线是H-B方程预测的速度曲线)[49]
Fig.3 The velocity profile of emulsion A (oil volume fraction Φ = 75%) was corrected for slip velocity (the dashed line is the speed curve predicted by the H-B equation)[49]
图5 (a)T型通道处气泡生成的界面破裂图像;(b) T型通道中气泡破裂的时空图;(c)单个气泡形成时间tb和气泡长度l演变图[80]
Fig.5 (a) Different stages of the break-up mechanism inside the T-junction;(b) Spatiotemporal diagram of the break-up dynamic for a bubble train; (c) Typical evolution of the time to form one bubble tb and bubble length l as functions of the time [80]
1 | Sollich P, Lequeux F, Hébraud P, et al. Rheology of soft glassy materials[J]. Physical Review Letters, 1997, 78(10): 2020-2023. |
2 | de Kee D. Yield stress measurement techniques: a review[J]. Physics of Fluids, 2021, 33(11): 111301. |
3 | 李振坤. 磁性液体流变特性及其对密封液体性能影响研究[D]. 北京: 北京交通大学, 2019. |
Li Z K. Study on the rheological property of magnetic liquids and its influence on sealing fluids performance[D]. Beijing: Beijing Jiaotong University, 2019. | |
4 | 李瑞琪, 韦越, 郭亚龙, 等. 复杂流体的屈服应力及其测定与应用[J]. 中国制笔, 2020(2): 21-31. |
Li R Q, Wei Y, Guo Y L, et al. The yield stress of complex fluid and its determination and application[J]. China Writing Instruments, 2020(2): 21-31. | |
5 | 吴爱祥, 李红, 程海勇, 等. 全尾砂膏体流变学研究现状与展望(下):流变测量与展望[J]. 工程科学学报, 2021, 43(4): 451-459. |
Wu A X, Li H, Cheng H Y, et al. Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): Rheological measurement and prospects[J]. Chinese Journal of Engineering, 2021, 43(4): 451-459. | |
6 | 杜宇. 典型屈服应力流体的非线性流变行为以及局部流动行为的研究[D]. 上海: 上海交通大学, 2013. |
Du Y. Nonlinear rheology and local flow behavior of typical yield stress fluids[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
7 | Ovarlez G, Rodts S, Chateau X, et al. Phenomenology and physical origin of shear localization and shear banding in complex fluids[J]. Rheologica Acta, 2009, 48(8): 831-844. |
8 | Paredes J, Shahidzadeh N, Bonn D. Wall slip and fluidity in emulsion flow[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2015, 92(4): 042313. |
9 | Hormozi S, Frigaard I A. Nonlinear stability of a visco-plastically lubricated viscoelastic fluid flow[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 169/170: 61-73. |
10 | Han Y N, Dama J F, Voth G A. Mesoscopic coarse-grained representations of fluids rigorously derived from atomistic models[J]. The Journal of Chemical Physics, 2018, 149(4): 044104. |
11 | 李佳明. 屈服应力流体的粗粒化分子动力学模拟研究[J]. 工业控制计算机, 2019, 32(6): 73-75. |
Li J M. Coarse grained molecular dynamic simulation of yield stress fluid[J]. Industrial Control Computer, 2019, 32(6): 73-75. | |
12 | de Souza Mendes P R, Thompson R L. Time-dependent yield stress materials[J]. Current Opinion in Colloid & Interface Science, 2019, 43: 15-25. |
13 | Ewoldt R H, McKinley G H. Mapping thixo-elasto-visco-plastic behavior[J]. Rheologica Acta, 2017, 56(3): 195-210. |
14 | Frigaard I. Simple yield stress fluids[J]. Current Opinion in Colloid & Interface Science, 2019, 43: 80-93. |
15 | Mitishita R S, MacKenzie J A, Elfring G J, et al. Fully turbulent flows of viscoplastic fluids in a rectangular duct[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 293: 104570. |
16 | Beris A, Tsamopoulos J, Armstrong R, et al. Creeping motion of a sphere through a Bingham plastic[J]. Journal of Fluid Mechanics, 1985, 158: 219-244. |
17 | Tammaro D, Chandran S V, Kannan A, et al. Flowering in bursting bubbles with viscoelastic interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(30): e2105058118. |
18 | Frigaard I A. Super-stable parallel flows of multiple visco-plastic fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 100(1/2/3): 49-75. |
19 | Testa P, Chappuis B, Kistler S, et al. Switchable adhesion of soft composites induced by a magnetic field[J]. Soft Matter, 2020, 16(25): 5806-5811. |
20 | Lira S A, Miranda J A. Field-controlled adhesion in confined magnetorheological fluids[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2009, 80(4 Pt 2): 046313. |
21 | Morillas J R, de Vicente J. Magnetorheology: a review[J]. Soft Matter, 2020, 16(42): 9614-9642. |
22 | Crassous J J, Mihut A M, Dietsch H, et al. Advanced multiresponsive comploids: from design to possible applications[J]. Nanoscale, 2014, 6(15): 8726-8735. |
23 | Zhang H, Cong Y, Osi A R, et al. Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth[J]. Advanced Functional Materials, 2020, 30(13): 1910573. |
24 | 邱玉锐. 聚苯胺类材料的合成及电流变性能研究[D]. 湘潭: 湘潭大学, 2011. |
Qiu Y R. Study on the synthesis and electrorheolgical properties of polyaniline derivatives[D]. Xiangtan: Xiangtan University, 2011. | |
25 | 陈承响. 端基为硫辛酸酯的遥爪型聚合物的合成及其在基础油中的凝胶性能研究[D]. 兰州: 兰州大学, 2020. |
Chen C X. Synthesis of thioctic acid ester terminated telechelic polymers and their gelation in base oil[D]. Lanzhou: Lanzhou University, 2020. | |
26 | 王俊,俞炜,周持兴. 聚合物黏弹性及填充粒子对纳米复合体系屈服应力的影响[C]// 2015年全国高分子学术论文报告会. 苏州, 2015. |
Wang J, Yu W, Zhou C X. Effect of polymer viscoelasticity and packed particles on yield stress of nanocomposite systems [C]// The National Polymer Academic Paper Report Conference 2015. Suzhou, 2015. | |
27 | Nelson A Z, Schweizer K S, Rauzan B M, et al. Designing and transforming yield-stress fluids[J]. Current Opinion in Solid State and Materials Science, 2019, 23(5): 100758. |
28 | Zhang P, Li Y H, Chen L, et al. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants[J]. Frontiers of Chemical Science and Engineering, 2022, 16(6): 939-949. |
29 | 何慕, 罗未知, 雷蕾, 等. 多孔介质声学:从微观几何特征到宏观吸声性能[J]. 固体力学学报, 2022, 43(4): 485-518. |
He M, Luo W Z, Lei L, et al. Acoustics of porous media: from microscopic geometric structures to macroscopic sound absorption performances[J]. Chinese Journal of Solid Mechanics, 2022, 43(4): 485-518. | |
30 | 刘鹏飞, 邵玉, 李春雪, 等. 气泡特征对混凝土耐久性能影响的研究[J]. 混凝土世界, 2022(2): 56-59. |
Liu P F, Shao Y, Li C X, et al. Study on the influence of bubble characteristics on the durability of concrete[J]. China Concrete, 2022(2): 56-59. | |
31 | 王春国, 文安松, 范子豪, 等. 泡沫增强复合材料点阵夹芯梁抗冲击性能[J]. 高压物理学报, 2022, 36(1): 115-124. |
Wang C G, Wen A S, Fan Z H, et al. Dynamic failure of foam-reinforce composite lattice sandwich beam to local impulsive load[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 115-124. | |
32 | Laborie B, Rouyer F, Angelescu D E, et al. Yield-stress fluids foams: flow patterns and controlled production in T-junction and flow-focusing devices[J]. Soft Matter, 2016, 12(46): 9355-9363. |
33 | Laborie B, Rouyer F, Angelescu D E, et al. On the stability of the production of bubbles in yield-stress fluid using flow-focusing and T-junction devices[J]. Physics of Fluids, 2016, 28(6): 063103. |
34 | 韩征, 粟滨, 李艳鸽, 等. 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485, 510. |
Han Z, Su B, Li Y G, et al. Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model[J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485, 510. | |
35 | Kozicki W, Kuang P Q. Prediction of lower/upper limiting viscosities[J]. The Canadian Journal of Chemical Engineering, 1993, 71(2): 329-331. |
36 | Dinkgreve M, Paredes J, Denn M M, et al. On different ways of measuring “the” yield stress[J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 238: 233-241. |
37 | Younes E, Bertola V, Castelain C, et al. Slippery flows of a Carbopol gel in a microchannel [J]. Physical Review Fluids, 2020, 5(8). |
38 | Menut P, Seiffert S, Sprakel J, et al. Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels[J]. Soft Matter, 2012, 8(1): 156-164. |
39 | Coussot P. Yield stress fluid flows: a review of experimental data[J]. Journal of Non-Newtonian Fluid Mechanics, 2014, 211: 31-49. |
40 | Peng X Y, Wang T Y, Sun K, et al. Droplet splashing during the impact on liquid pools of shear-thinning fluids with yield stress[J]. Physics of Fluids, 2021, 33(11): 112106. |
41 | Hojeij A, Jossic L, Séchet P, et al. Experimental study and numerical modeling of mixing by air injection in yield stress fluids using the OpenFOAM software[J]. AIChE Journal, 2022, 68(2): e17442. |
42 | Tsamopoulos J, Dimakopoulos Y, Chatzidai N, et al. Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment[J]. Journal of Fluid Mechanics, 2008, 601: 123-164. |
43 | Mougin N, Magnin A, Piau J M. The significant influence of internal stresses on the dynamics of bubbles in a yield stress fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 171/172: 42-55. |
44 | Chaparian E, Owens C E, McKinley G H. Computational rheometry of yielding and viscoplastic flow in vane-and-cup rheometer fixtures[J]. Journal of Non-Newtonian Fluid Mechanics, 2022, 307: 104857. |
45 | Haustein M A, Eslami Pirharati M, Fataei S, et al. Benchmark simulations of dense suspensions flow using computational fluid dynamics [J]. Frontiers in Materials, 2022, DOI: 10.3389/fmats.2022.874144 . |
46 | Froishteter G B, Vinogradov G V. The laminar flow of plastic disperse systems in circular tubes[J]. Rheologica Acta, 1980, 19(2): 239-250. |
47 | Chilton R A, Stainsby R. Pressure loss equations for laminar and turbulent non-Newtonian pipe flow[J]. Journal of Hydraulic Engineering, 1998, 124(5): 522-529. |
48 | Slatter P P T. The role of the yield stress on the laminar/turbulent transition [C]// 9th International Conference on Transport and Sedimentation of Solid Particles. Cracow, 1997. |
49 | Goyon J, Colin A, Bocquet L. How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity[J]. Soft Matter, 2010, 6: 2668-2678. |
50 | Barnes H A. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure[J]. Journal of Non-Newtonian Fluid Mechanics, 1995, 56(3): 221-251. |
51 | Dreyfus R, Tabeling P, Willaime H. Ordered and disordered patterns in two-phase flows in microchannels[J]. Physical Review Letters, 2003, 90(14): 144505. |
52 | 李战华, 吴健康, 胡国庆. 微流控芯片中的流体流动[M]. 北京: 科学出版社, 2012: 92. |
Li Z H, Wu J K, Hu G Q. Fluid Flow in Microfluidic Chips[M]. Beijing: Science Press, 2012: 92. | |
53 | Christel M G, Yahya R, Albert M, et al. Stick-slip control of the Carbopol microgels on polymethyl methacrylate transparent smooth walls[J]. Soft Matter, 2012, 8: 7365-7367. |
54 | Bonn D, Denn M M, Berthier L, et al. Yield stress materials in soft condensed matter [J]. Reviews of Modern Physics, 2017, 89(3): 035005. |
55 | Kalyon D. Apparent slip and viscoplasticity of concentrated suspensions[J]. Journal of Rheology, 2005, 49: 621-640. |
56 | Magnin A, Piau J M. Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel[J]. Journal of Non-Newtonian Fluid Mechanics, 1990, 36: 85-108. |
57 | Younes E, Himl M, Stary Z, et al. On the elusive nature of Carbopol gels: “model”, weakly thixotropic, or time-dependent viscoplastic materials? [J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 281: 104315. |
58 | Liu Y, Lorusso D, Holdsworth D W, et al. Effect of confinement on the rheology of a yield-stress fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2018, 261: 25-32. |
59 | Goyon J, Colin A, Ovarlez G, et al. Spatial cooperativity in soft glassy flows[J]. Nature, 2008, 454(7200): 84-87. |
60 | Jofore B D, Erni P, Vleminckx G, et al. Rheology of microgels in single particle confinement[J]. Rheologica Acta, 2015, 54(7): 581-600. |
61 | Clasen C, McKinley G H. Gap-dependent microrheometry of complex liquids[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 124(1/2/3): 1-10. |
62 | Mensire R, Lorenceau E. Stable oil-laden foams: formation and evolution[J]. Advances in Colloid and Interface Science, 2017, 247: 465-476. |
63 | 路慧玲, 戴干策. 纤维增强复合材料浸渍过程中气泡的形成与排除[J]. 纤维复合材料, 2000, 17(3): 7-10. |
Lu H L, Dai G C. Formation and elimination of voids in the impregnation of glass reinforced composites[J]. Fiber Composites, 2000, 17(3): 7-10. | |
64 | Bonnett D L, Butler P B. Hot-spot ignition of condensed phase energetic materials[J]. Journal of Propulsion and Power, 1996, 12(4): 680-690. |
65 | Samson G, Phelipot-Mardelé A, Lanos C, et al. Quasi-static bubble in a yield stress fluid: elasto-plastic model[J]. Rheologica Acta, 2017, 56(5): 431-443. |
66 | Zare M, Frigaard I A. Onset of miscible and immiscible fluids' invasion into a viscoplastic fluid[J]. Physics of Fluids, 2018, 30(6): 063101. |
67 | Mossaz S, Jay P, Magnin A. Two-dimensional unsteady inertial flows of a yield stress fluid around a cylinder[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 295: 104623. |
68 | Sikorski D, Tabuteau H, de Bruyn J R. Motion and shape of bubbles rising through a yield-stress fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 159(1/2/3): 10-16. |
69 | Iglesias J A, Mercier G, Chaparian E, et al. Computing the yield limit in three-dimensional flows of a yield stress fluid about a settling particle[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 284: 104374. |
70 | Terasaka K, Tsuge H. Bubble formation at a nozzle submerged in viscous liquids having yield stress[J]. Chemical Engineering Science, 2001, 56(10): 3237-3245. |
71 | Singh J P, Denn M M. Interacting two-dimensional bubbles and droplets in a yield-stress fluid[J]. Physics of Fluids, 2008, 20(4): 040901. |
72 | Pourzahedi A, Zare M, Frigaard I A. Eliminating injection and memory effects in bubble rise experiments within yield stress fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 292: 104531. |
73 | Putz A M V, Burghelea T I, Frigaard I A, et al. Settling of an isolated spherical particle in a yield stress shear thinning fluid[J]. Physics of Fluids, 2008, 20(3): 033102. |
74 | Putz A, Frigaard I A. Creeping flow around particles in a Bingham fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(5/6): 263-280. |
75 | Fraggedakis D, Dimakopoulos Y, Tsamopoulos J. Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids[J]. Soft Matter, 2016, 12(24): 5378-5401. |
76 | 王宜飞, 王清强, 姬德生, 等. 微通道壁面浸润性对气-液两相流的影响规律研究[J]. 化工学报, 2022, 73(4): 1501-1514. |
Wang Y F, Wang Q Q, Ji D S, et al. Effects of the wall wettability of microchannel on the gas-liquid two-phase flow hydrodynamics[J]. CIESC Journal, 2022, 73(4): 1501-1514. | |
77 | Wang H, Shen Q Y, Zhu C Y, et al. Formation and uniformity of bubbles in highly viscous fluids in symmetric parallel microchannels[J]. Chemical Engineering Science, 2021, 230: 116166. |
78 | Wang H, Jiang S K, Zhu C Y, et al. Bubble formation in T-junctions within parallelized microchannels: effect of viscoelasticity[J]. Chemical Engineering Journal, 2021, 426: 131783. |
79 | Wang H, Liu L Y, Zhu C Y, et al. Stability and uniformity of gas-liquid two-phase flow in shear-thinning fluids in parallelized microchannels[J]. Chemical Engineering Journal, 2022, 444: 136679. |
80 | Laborie B, Rouyer F, Angelescu D E, et al. Bubble formation in yield stress fluids using flow-focusing and T-junction devices[J]. Physical Review Letters, 2015, 114(20): 204501. |
81 | Hashimoto M, Shevkoplyas S S, Zasońska B, et al. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries[J]. Small, 2008, 4(10): 1795-1805. |
82 | Zhang J, Coulston R J, Jones S T, et al. One-step fabrication of supramolecular microcapsules from microfluidic droplets[J]. Science, 2012, 335(6069): 690-694. |
83 | Dunne P, Adachi T, Dev A A, et al. Liquid flow and control without solid walls[J]. Nature, 2020, 581(7806): 58-62. |
84 | Liu Y C, Li Y L, Hensel A, et al. A review on emulsification via microfluidic processes[J]. Frontiers of Chemical Science and Engineering, 2020, 14(3): 350-364. |
85 | Wang J T, Zhang J, Han J J. Synthesis of crystals and particles by crystallization and polymerization in droplet-based microfluidic devices[J]. Frontiers of Chemical Engineering in China, 2010, 4(1): 26-36. |
86 | Lohse D. Fundamental fluid dynamics challenges in inkjet printing [J]. Annual Review of Fluid Mechanics, 2022, 54(1): 349-382. |
87 | Baroud C N, Gallaire F, Dangla R. Dynamics of microfluidic droplets[J]. Lab on a Chip, 2010, 10(16): 2032-2045. |
88 | 刘西洋, 付涛涛, 朱春英, 等. 微通道内非牛顿流体中液滴生成机理研究进展[J]. 化工学报, 2021, 72(2): 772-782. |
Liu X Y, Fu T T, Zhu C Y, et al. Progress on droplet formation mechanism in non-Newtonian fluids in microchannels[J]. CIESC Journal, 2021, 72(2): 772-782. | |
89 | 邓传富, 汪伟, 谢锐, 等. 液滴微流控的集成化放大方法研究进展[J]. 化工学报, 2021, 72(12): 5965-5974. |
Deng C F, Wang W, Xie R, et al. Recent progress in scale-up integration of microfluidic droplet generators[J]. CIESC Journal, 2021, 72(12): 5965-5974. | |
90 | Boujlel J, Coussot P. Measuring the surface tension of yield stress fluids[J]. Soft Matter, 2013, 9: 5898-5908. |
91 | Louvet N, Bonn D, Kellay H. Nonuniversality in the pinch-off of yield stress fluids: role of nonlocal rheology[J]. Physical Review Letters, 2014, 113(21): 218302. |
92 | Balmforth N J, Dubash N, Slim A C. Extensional dynamics of viscoplastic filaments(Ⅱ): Drips and bridges[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(19/20): 1147-1160. |
93 | Alam M J, Nirmalkar N, Gupta A K. Stability criteria and convective mass transfer from the falling spherical drops(Ⅱ): Herschel-Bulkley fluids [J]. Canadian Journal of Chemical Engineering, 2022, 100(7): 1640-1651. |
94 | He C X, Jiang S K, Zhu C Y, et al. Self-assembly of droplet swarms and its feedback on droplet generation in a step-emulsification microdevice with parallel microchannels[J]. Chemical Engineering Science, 2022, 256: 117685. |
95 | 张志伟, 朱春英, 马友光, 等. 微通道内气泡和液滴自组织行为的研究进展[J]. 化工学报, 2022, 73(1): 144-152. |
Zhang Z W, Zhu C Y, Ma Y G, et al. Progress of self-organization behavior of bubbles and droplets in microchannels[J]. CIESC Journal, 2022, 73(1): 144-152. | |
96 | Hong J S, Cooper-White J. Drop formation of Carbopol dispersions displaying yield stress, shear thinning and elastic properties in a flow-focusing microfluidic channel[J]. Korea-Australia Rheology Journal, 2009, 21: 269-280. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[3] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[4] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[5] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[6] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[7] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[10] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[11] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[12] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[13] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[14] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[15] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||