化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1022-1043.DOI: 10.11949/0438-1157.20211451
收稿日期:
2021-10-12
修回日期:
2021-12-07
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
俞娟
作者简介:
许超群(1997—),男,博士研究生,基金资助:
Chaoqun XU1(),Juan YU1(),Yimin FAN1,Jifu WANG2,Fuxiang CHU1,2
Received:
2021-10-12
Revised:
2021-12-07
Online:
2022-03-15
Published:
2022-03-14
Contact:
Juan YU
摘要:
纳米纤维素不仅具有天然纤维素的基本结构和特性,还具有纳米粒子的独特性能,使其成为众多领域的研究热点。然而,由于纳米纤维素表面存在丰富的羟基,导致表面化学性质单一,需要对其进行化学改性拓宽应用领域。原子转移自由基聚合法(ATRP)能够对纳米纤维素表面进行接枝改性,从而赋予纳米纤维素多样化的功能特性,是纳米纤维素高值化应用的重要方法。本文首先总结了传统ATRP法以及四种新型ATRP法在纳米纤维素表面接枝改性中的应用进展;随后介绍了ATRP法在纳米纤维素端基接枝改性中的应用进展;然后分别介绍了ATRP改性的纳米纤维素接枝共聚物在纳米复合增强、智能响应、环保和生物医疗等领域的应用研究;最后总结了ATRP法改性纳米纤维素存在的难点,并展望了未来ATRP法在纳米纤维素接枝改性领域的发展趋势。
中图分类号:
许超群, 俞娟, 范一民, 王基夫, 储富祥. 原子转移自由基聚合法接枝改性纳米纤维素及其功能化应用[J]. 化工学报, 2022, 73(3): 1022-1043.
Chaoqun XU, Juan YU, Yimin FAN, Jifu WANG, Fuxiang CHU. Chemical modification of nanocellulose via atom transfer radical polymerization: strategy, applications and challenges[J]. CIESC Journal, 2022, 73(3): 1022-1043.
1 | Klemm D, Heublein B, Fink H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005, 44(22): 3358-3393. |
2 | 陈京环, 王堃, 许凤, 等. 新型溶剂法制备再生纤维素纤维研究进展[J]. 化工学报, 2014, 65(11): 4213-4221. |
Chen J H, Wang K, Xu F, et al. Progress of preparing regenerated cellulose fibers using novel dissolution process[J]. CIESC Journal, 2014, 65(11): 4213-4221. | |
3 | Roy D, Semsarilar M, Guthrie J T, et al. Cellulose modification by polymer grafting: a review[J]. Chemical Society Reviews, 2009, 38(7): 2046-2064. |
4 | Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1): 71-85. |
5 | 叶代勇. 纳米纤维素的制备[J]. 化学进展, 2007, 19(10): 1568-1575. |
Ye D Y. Preparation of nanocellulose[J]. Progress in Chemistry, 2007, 19(10): 1568-1575. | |
6 | 李伟, 王锐, 刘守新. 纳米纤维素的制备[J]. 化学进展, 2010, 22(10): 2060-2070. |
Li W, Wang R, Liu S X. Preparation of nanocrystalline cellulose[J]. Progress in Chemistry, 2010, 22(10): 2060-2070. | |
7 | Nechyporchuk O, Belgacem M N, Bras J. Production of cellulose nanofibrils: a review of recent advances[J]. Industrial Crops and Products, 2016, 93: 2-25. |
8 | Hoeng F, Denneulin A, Bras J. Use of nanocellulose in printed electronics: a review[J]. Nanoscale, 2016, 8(27): 13131-13154. |
9 | Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(7): 3941-3994. |
10 | Eichhorn S J, Dufresne A, Aranguren M, et al. Review: current international research into cellulose nanofibres and nanocomposites[J]. Journal of Materials Science, 2010, 45(1): 1-33. |
11 | Oksman K, Aitomäki Y, Mathew A P, et al. Review of the recent developments in cellulose nanocomposite processing[J]. Composites Part A: Applied Science and Manufacturing, 2016, 83: 2-18. |
12 | Kim J H, Shim B S, Kim H S, et al. Review of nanocellulose for sustainable future materials[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2(2): 197-213. |
13 | Fujisawa S, Ikeuchi T, Takeuchi M, et al. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies[J]. Biomacromolecules, 2012, 13(7): 2188-2194. |
14 | Heise K, Delepierre G, King A, et al. Chemical modification of cellulose nanocrystal reducing end‐groups[J]. Angewandte Chemie International Edition, 2020, 60(1): 66-87. |
15 | Wohlhauser S, Delepierre G, Labet M, et al. Grafting polymers from cellulose nanocrystals: synthesis, properties, and applications[J]. Macromolecules, 2018, 51(16): 6157-6189. |
16 | Kedzior S A, Zoppe J O, Berry R M, et al. Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting[J]. Current Opinion in Solid State and Materials Science, 2019, 23(2): 74-91. |
17 | Pang X, He Y, Jung J, et al. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures[J]. Science, 2016, 353(6305): 1268-1272. |
18 | Habibi Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews, 2014, 43(5): 1519-1542. |
19 | Siegwart D J, Oh J K, Matyjaszewski K. ATRP in the design of functional materials for biomedical applications[J]. Progress in Polymer Science, 2012, 37(1): 18-37. |
20 | 刘雄利, 王安, 王春平, 等. 纤维素纳米纤丝的制备和改性研究进展[J]. 中国造纸, 2020, 39(4): 74-83. |
Liu X L, Wang A, Wang C P, et al. Research progress in preparation and modification of cellulose nanofibril[J]. China Pulp & Paper, 2020, 39(4): 74-83. | |
21 | Neugebauer D. Two decades of molecular brushes by ATRP[J]. Polymer, 2015, 72: 413-421. |
22 | Matyjaszewski K. Atom transfer radical polymerization (ATRP): current status and future perspectives[J]. Macromolecules, 2012, 45(10): 4015-4039. |
23 | Zhang Z, Sèbe G, Hou Y, et al. Grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization[J]. Journal of Applied Polymer Science, 2021, 138(48): 51458. |
24 | Lin F B, Cousin F, Putaux J L, et al. Temperature-controlled star-shaped cellulose nanocrystal assemblies resulting from asymmetric polymer grafting[J]. ACS Macro Letters, 2019, 8(4): 345-351. |
25 | Tang C, Spinney S, Shi Z, et al. Amphiphilic cellulose nanocrystals for enhanced pickering emulsion stabilization[J]. Langmuir, 2018, 34(43): 12897-12905. |
26 | Kontturi E, Laaksonen P, Linder M B, et al. Advanced materials through assembly of nanocelluloses[J]. Advanced Materials, 2018, 30(24): 1703779. |
27 | Tao H, Lavoine N, Jiang F, et al. Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges[J]. Nanoscale Horizons, 2020, 5(4): 607-627. |
28 | Chemin M, Moreau C, Cathala B, et al. Asymmetric modification of cellulose nanocrystals with PAMAM dendrimers for the preparation of pH-responsive hairy surfaces[J]. Carbohydrate Polymers, 2020, 249: 116779. |
29 | Arredondo J, Jessop P G, Champagne P, et al. Synthesis of CO2-responsive cellulose nanocrystals by surface-initiated Cu0-mediated polymerisation[J]. Green Chemistry, 2017, 19(17): 4141-4152. |
30 | Wang H D, Roeder R D, Whitney R A, et al. Graft modification of crystalline nanocellulose by Cu0-mediated SET living radical polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53(24): 2800-2808. |
31 | Morits M, McKee J R, Majoinen J, et al. Polymer brushes on cellulose nanofibers: modification, SI-ATRP, and unexpected degradation processes[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7642-7650. |
32 | Majoinen J, Walther A, McKee J R, et al. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization[J]. Biomacromolecules, 2011, 12(8): 2997-3006. |
33 | Boujemaoui A, Mongkhontreerat S, Malmström E, et al. Preparation and characterization of functionalized cellulose nanocrystals[J]. Carbohydrate Polymers, 2015, 115: 457-464. |
34 | Malho J M, Morits M, Löbling T I, et al. Rod-like nanoparticles with striped and helical topography[J]. ACS Macro Letters, 2016, 5(10): 1185-1190. |
35 | Morandi G, Heath L, Thielemans W. Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP)[J]. Langmuir, 2009, 25(14): 8280-8286. |
36 | Yin Y, Tian X, Jiang X, et al. Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate[J]. Carbohydrate Polymers, 2016, 142: 206-212. |
37 | Morandi G, Thielemans W. Synthesis of cellulose nanocrystals bearing photocleavable grafts by ATRP[J]. Polymer Chemistry, 2012, 3(6): 1402-1407. |
38 | Zhang Z, Tam K C, Sèbe G, et al. Convenient characterization of polymers grafted on cellulose nanocrystals via SI-ATRP without chain cleavage[J]. Carbohydrate Polymers, 2018, 199: 603-609. |
39 | Zhang Z, Wang X S, Tam K C, et al. A comparative study on grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization (ATRP) and activator re-generated by electron transfer ATRP[J]. Carbohydrate Polymers, 2019, 205: 322-329. |
40 | Yu J, Wang C P, Wang J F, et al. In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization[J]. Carbohydrate Polymers, 2016, 141: 143-150. |
41 | Zoppe J O, Xu X Y, Känel C, et al. Effect of surface charge on surface-initiated atom transfer radical polymerization from cellulose nanocrystals in aqueous media[J]. Biomacromolecules, 2016, 17(4): 1404-1413. |
42 | Huang C F, Chen J K, Tsai T Y, et al. Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP[J]. Polymer, 2015, 72: 395-405. |
43 | Morits M, Hynninen V, Nonappa N, et al. Polymer brush guided templating on well-defined rod-like cellulose nanocrystals[J]. Polymer Chemistry, 2018, 9(13): 1650-1657. |
44 | Du Y R, Cheng H, Li Y Z, et al. Temperature-responsive cellulose sponge with switchable pore size: application as a water flow manipulator[J]. Materials Letters, 2018, 210: 337-340. |
45 | Li Y Z, Zhu L Q, Grishkewich N, et al. CO2-responsive cellulose nanofibers aerogels for switchable oil-water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 9367-9373. |
46 | Park C H, Jeon S, Park S H, et al. Cellulose nanocrystal-assembled reverse osmosis membranes with high rejection performance and excellent antifouling[J]. Journal of Materials Chemistry A, 2019, 7(8): 3992-4001. |
47 | Kedzior S A, Kiriakou M, Niinivaara E, et al. Incorporating cellulose nanocrystals into the core of polymer latex particles via polymer grafting[J]. ACS Macro Letters, 2018, 7(8): 990-996. |
48 | Boujemaoui A, Cobo Sanchez C, Engström J, et al. Polycaprolactone nanocomposites reinforced with cellulose nanocrystals surface-modified via covalent grafting or physisorption: a comparative study[J]. ACS Applied Materials & Interfaces, 2017, 9(40): 35305-35318. |
49 | Zhang Z, Sèbe G, Wang X S, et al. UV-absorbing cellulose nanocrystals as functional reinforcing fillers in poly(vinyl chloride) films[J]. ACS Applied Nano Materials, 2018, 1(2): 632-641. |
50 | Le Gars M, Bras J, Salmi-Mani H, et al. Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites[J]. Carbohydrate Polymers, 2020, 234: 115899. |
51 | Wang Z K, Zhang Y Q, Yuan L, et al. Biomass approach toward robust, sustainable, multiple-shape-memory materials[J]. ACS Macro Letters, 2016, 5(5): 602-606. |
52 | Lamm M E, Wang Z K, Zhou J J, et al. Sustainable epoxy resins derived from plant oils with thermo- and chemo-responsive shape memory behavior[J]. Polymer, 2018, 144: 121-127. |
53 | Yuan W Z, Wang C Y, Lei S Z, et al. Ultraviolet light-, temperature-and pH-responsive fluorescent sensors based on cellulose nanocrystals[J]. Polymer Chemistry, 2018, 9(22): 3098-3107. |
54 | Zhang J L, Wu Q L, Li M C, et al. Thermoresponsive copolymer poly(N-vinylcaprolactam) grafted cellulose nanocrystals: synthesis, structure, and properties[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7439-7447. |
55 | Zhang X Q, Zhang J L, Dong L L, et al. Thermoresponsive poly(poly(ethylene glycol) methylacrylate)s grafted cellulose nanocrystals through SI-ATRP polymerization[J]. Cellulose, 2017, 24(10): 4189-4203. |
56 | Grishkewich N, Akhlaghi S P, Yao Z L, et al. Cellulose nanocrystal-poly(oligo(ethylene glycol) methacrylate) brushes with tunable LCSTs[J]. Carbohydrate Polymer, 2016, 144: 215-222. |
57 | Abousalman-Rezvani Z, Eskandari P, Roghani-Mamaqani H, et al. Grafting light-, temperature, and CO2-responsive copolymers from cellulose nanocrystals by atom transfer radical polymerization for adsorption of nitrate ions[J]. Polymer, 2019, 182: 121830. |
58 | 李明, 付时雨. 功能改性纤维素纳米晶体作为阴离子染料吸附剂[J]. 造纸与生物质材料, 2018, 3(4): 1-9. |
Li M, Fu S Y. Functionally modified cellulose nanocrystals as an adsorbent for anionic dyes[J]. Paper and Biomaterials, 2018, 3(4): 1-9. | |
59 | Li M, Liu X H, Liu N, et al. Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 122-128. |
60 | Hu H, Yuan W, Liu F S, et al. Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8942-8951. |
61 | Hu H, Hou X J, Wang X C, et al. Gold nanoparticle-conjugated heterogeneous polymer brush-wrapped cellulose nanocrystals prepared by combining different controllable polymerization techniques for theranostic applications[J]. Polymer Chemistry, 2016, 7(18): 3107-3116. |
62 | Risteen B, Delepierre G, Srinivasarao M, et al. Thermally switchable liquid crystals based on cellulose nanocrystals with patchy polymer grafts[J]. Small, 2018, 14(46): 1802060. |
63 | Zoppe J O, Dupire A V M, Lachat T G G, et al. Cellulose nanocrystals with tethered polymer chains: chemically patchy versus uniform decoration[J]. ACS Macro Letters, 2017, 6(9): 892-897. |
64 | Zhang Z, Sèbe G, Wang X S, et al. Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts[J]. Carbohydrate Polymers, 2018, 182: 61-68. |
65 | Li S Z, Xiao M M, Zheng A N, et al. Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement[J]. Biomacromolecules, 2011, 12(9): 3305-3312. |
66 | Hemraz U D, Campbell K A, Burdick J S, et al. Cationic poly(2-aminoethylmethacrylate) and poly(N-(2-aminoethylmethacrylamide)) modified cellulose nanocrystals: synthesis, characterization, and cytotoxicity[J]. Biomacromolecules, 2015, 16(1): 319-325. |
67 | Zoppe J O, Habibi Y, Rojas O J, et al. Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization[J]. Biomacromolecules, 2010, 11(10): 2683-2691. |
68 | Rosilo H, McKee J R, Kontturi E, et al. Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding[J]. Nanoscale, 2014, 6(20): 11871-11881. |
69 | Matyjaszewski K, Pintauer T, Gaynor S. Removal of copper-based catalyst in atom transfer radical polymerization using ion exchange resins[J]. Macromolecules, 2000, 33(4): 1476-1478. |
70 | Percec V, Guliashvili T, Ladislaw J S, et al. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25℃[J]. Journal of the American Chemical Society, 2006, 128(43): 14156-14165. |
71 | 胡育林, 付含琦, 梁滔, 等. 单电子转移活性自由基聚合特点及应用[J]. 高分子通报, 2018(1): 53-57. |
Hu Y L, Fu H Q, Liang T, et al. The characteristics and applications of single electron transfer living free radical polymerization[J]. Polymer Bulletin, 2018(1): 53-57. | |
72 | Zoppe J O, Osterberg M, Venditti R A, et al. Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes[J]. Biomacromolecules, 2011, 12(7): 2788-2796. |
73 | 吴伟兵, 徐朝阳, 庄志良, 等. 单电子转移活性自由基聚合制备温敏型荧光纤维素纳米晶[J]. 高分子学报, 2015(3): 338-345. |
Wu W B, Xu Z Y, Zhuang Z L, et al. Fluorescent and thermo-responsive cellulose nanocrystals via single-electron transfer living radical polymerization[J]. Acta Polymerica Sinica, 2015(3): 338-345. | |
74 | 张磊, 王春凤, 陈奉娇, 等. 电子转移活化再生催化剂原子转移自由基聚合(ARGET ATRP)的研究进展[J]. 化工新型材料, 2012, 40(7):21-24. |
Zhang L, Wang C F, Chen F J, et al. Research progress of electronic transfer activate regeneration atom transfer radical polymerization[J]. New Chemical Materials, 2012, 40(7): 21-24. | |
75 | Liu X H, Li M, Zheng X M, et al. Dual light-and pH-responsive composite of polyazo-derivative grafted cellulose nanocrystals[J]. Materials, 2018, 11(9): 1725. |
76 | 巩桂芬, 王晓惠, 胡雪娇, 等. 纳米纤维素ARGET ATRP接枝PMMA改性研究[J]. 化工新型材料, 2016, 44(3): 118-120. |
Gong G F, Wang X H, Hu X J, et al. Study on modification of nanocrystalline cellulose by grafting PMMA using ARGET ATRP method[J]. New Chemical Materials, 2016, 44(3): 118-120. | |
77 | 赵璐洋, 夏子华, 宋如愿, 等. 表面接枝PDEGMA纤维素纳米晶的制备及其温敏性[J]. 纤维素科学与技术, 2017, 25(4): 10-15. |
Zhao L Y, Xia Z H, Song R Y, et al. Cellulose nanocrystals graft with PDEGMA through surface ARGET ATRP[J]. Journal of Cellulose Science and Technology, 2017, 25(4): 10-15. | |
78 | Kaldéus T, Telaretti Leggieri M R, Cobo Sanchez C, et al. All-aqueous SI-ARGET ATRP from cellulose nanofibrils using hydrophilic and hydrophobic monomers[J]. Biomacromolecules, 2019, 20(5): 1937-1943. |
79 | Toloza Porras C, D'Hooge D R, van Steenberge P H M, et al. A theoretical exploration of the potential of ICAR ATRP for one- and two-pot synthesis of well-defined diblock copolymers[J]. Macromolecular Reaction Engineering, 2013, 7(7): 311-326. |
80 | Fierens S K, van Steenberge P H M, Reyniers M F, et al. How penultimate monomer unit effects and initiator influence ICAR ATRP of n-butyl acrylate and methyl methacrylate[J]. AIChE Journal, 2017, 63(11): 4971-4986. |
81 | Tu C W, Tsai F C, Chang C J, et al. Surface-initiated initiators for continuous activator regeneration (SI ICAR) ATRP of MMA from 2,2,6,6-tetramethylpiperidine-1-oxy (TEMPO) oxidized cellulose nanofibers for the preparations of PMMA nanocomposites[J]. Polymers, 2019, 11(10): 1631. |
82 | Hatton F L, Kedzior S A, Cranston E D, et al. Grafting-from cellulose nanocrystals via photoinduced Cu-mediated reversible-deactivation radical polymerization[J]. Carbohydrate Polymers, 2017, 157: 1033-1040. |
83 | Treat N J, Sprafke H, Kramer J W, et al. Metal-free atom transfer radical polymerization[J]. Journal of the American Chemical Society, 2014, 136(45): 16096-16101. |
84 | Chen J Y, Mao L C, Qi H X, et al. Preparation of fluorescent cellulose nanocrystal polymer composites with thermo-responsiveness through light-induced ATRP[J]. Cellulose, 2020, 27(2): 743-753. |
85 | Bai L J, Jiang X Y, Sun Z X, et al. Self-healing nanocomposite hydrogels based on modified cellulose nanocrystals by surface-initiated photoinduced electron transfer ATRP[J]. Cellulose, 2019, 26(9): 5305-5319. |
86 | Delepierre G, Heise K, Malinen K, et al. Challenges in synthesis and analysis of asymmetrically grafted cellulose nanocrystals via atom transfer radical polymerization[J]. Biomacromolecules, 2021, 22(6): 2702-2717. |
87 | Ghasemlou M, Daver F, Ivanova E P, et al. Surface modifications of nanocellulose: from synthesis to high-performance nanocomposites[J]. Progress in Polymer Science, 2021, 119: 101418. |
88 | Chu Y, Sun Y, Wu W, et al. Dispersion properties of nanocellulose: a review[J]. Carbohydrate Polymers, 2020, 250: 116892 |
89 | McKee J R, Appel E A, Seitsonen J, et al. Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods[J]. Advanced Functional Materials, 2014, 24(18): 2706-2713. |
90 | Jochum F D, Theato P. Temperature- and light-responsive smart polymer materials[J]. Chemical Society Reviews, 2013, 42(17): 7468-7483. |
91 | Wu W B, Huang F, Pan S B, et al. Thermo-responsive and fluorescent cellulose nanocrystals grafted with polymer brushes[J]. Journal of Materials Chemistry A, 2015, 3(5): 1995-2005. |
92 | Malho J M, Brand J, Pecastaings G, et al. Multifunctional stimuli-responsive cellulose nanocrystals via dual surface modification with genetically engineered elastin-like polypeptides and poly(acrylic acid)[J]. ACS Macro Letters, 2018, 7(6): 646-650. |
93 | 茹静, 耿璧垚, 童聪聪, 等. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251. |
Ru J, Geng B Y, Tong C C, et al. Nanocellulose-based adsorption materials[J]. Progress in Chemistry, 2017, 29(10): 1228-1251. | |
94 | Jin L Q, Sun Q C, Xu Q H, et al. Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine[J]. Bioresource Technology, 2015, 197: 348-355. |
95 | Martínez-Quiroz M, López-Maldonado E A, Ochoa-Terán A, et al. Innovative uses of carbamoyl benzoic acids in coagulation-flocculation’s processes of wastewater[J]. Chemical Engineering Journal, 2017, 307: 981-988. |
96 | Jin L Q, Li W G, Xu Q H, et al. Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes[J]. Cellulose, 2015, 22(4): 2443-2456. |
97 | Clift M J D, Foster E J, Vanhecke D, et al. Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture[J]. Biomacromolecules, 2011, 12(10): 3666-3673. |
98 | Hu D Y, Wang L J. Preparation and characterization of antibacterial films based on polyvinyl alcohol/quaternized cellulose[J]. Reactive and Functional Polymers, 2016, 101: 90-98. |
99 | Gonçalves S D Á, Vieira R P. Current status of ATRP-based materials for gene therapy[J]. Reactive and Functional Polymers, 2020, 147: 104453. |
100 | Saini S, Yücel Falco Ç, Belgacem M N, et al. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces[J]. Carbohydrate Polymers, 2016, 135: 239-247. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[4] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[5] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[6] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[9] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[10] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[11] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[12] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[13] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
[14] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
[15] | 张静, 刘涛, 张伟, 储震宇, 金万勤. 一种新型分离传感膜的制备及其血糖的动态监测[J]. 化工学报, 2023, 74(1): 459-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||