化工学报 ›› 2023, Vol. 74 ›› Issue (2): 968-976.DOI: 10.11949/0438-1157.20221400
• 过程安全 • 上一篇
收稿日期:
2022-10-23
修回日期:
2022-11-14
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
赵焕娟
作者简介:
赵焕娟(1985—),女,博士,副教授,ziai.1985@163.com
基金资助:
Huanjuan ZHAO1(), Jing LIU1, Donglei ZHOU2, Min LIN3
Received:
2022-10-23
Revised:
2022-11-14
Online:
2023-02-05
Published:
2023-03-21
Contact:
Huanjuan ZHAO
摘要:
为了研究多孔材料对氢气爆轰的抑制作用,在内径80 mm、长6000 mm的爆轰圆管中开展2H2+O2+3Ar预混气爆轰传播实验。在距点火头5000 mm处放置不同孔隙密度(10、20、40 ppi)厚度30 mm的Al2O3泡沫陶瓷和不同厚度(10、30、50 mm)孔隙密度20 ppi的泡沫铁镍金属,分别使用压力传感器、烟膜记录爆轰波压力、胞格结构,计算爆轰波传播速度。结果表明,速度亏损和胞格尺寸随着孔隙密度或厚度的增加而增大,但是均与初始压力成反比。两种多孔材料的材料特性不同,泡沫铁镍金属具有良好的导热性,因此对爆轰波的抑制效果强于Al2O3泡沫陶瓷。
中图分类号:
赵焕娟, 刘婧, 周冬雷, 林敏. 多孔材料对氢气爆轰的抑制作用[J]. 化工学报, 2023, 74(2): 968-976.
Huanjuan ZHAO, Jing LIU, Donglei ZHOU, Min LIN. Inhibition effect of porous materials on hydrogen detonation[J]. CIESC Journal, 2023, 74(2): 968-976.
管道 | 参数 | |
---|---|---|
光滑管 | 0 | |
Al2O3泡沫陶瓷 | 30 mm | 10 ppi |
20 ppi | ||
40 ppi | ||
泡沫铁镍金属 | 20 ppi | 10 mm |
30 mm | ||
50 mm |
表1 多孔材料实验参数
Table 1 Experimental parameter of the porous material
管道 | 参数 | |
---|---|---|
光滑管 | 0 | |
Al2O3泡沫陶瓷 | 30 mm | 10 ppi |
20 ppi | ||
40 ppi | ||
泡沫铁镍金属 | 20 ppi | 10 mm |
30 mm | ||
50 mm |
1 | Sun X X, Li Q, Wang L Q, et al. Experimental investigation of detonation propagation in hydrogen-air mixtures in a tube filled with bundles[J]. Experimental Thermal and Fluid Science, 2019, 102: 316-324. |
2 | Goodwin G B, Houim R W, Oran E S. Effect of decreasing blockage ratio on DDT in small channels with obstacles[J]. Combustion and Flame, 2016, 173: 16-26. |
3 | 雷明川, 喻健良, 闫兴清, 等. 惰性气体对氢气/空气爆轰传播的抑制作用[J]. 化工学报, 2022, 73(10): 4754-4761. |
Lei M C, Yu J L, Yan X Q, et al. Inhibition of hydrogen/air detonation propagation by inert gases[J]. CIESC Journal, 2022, 73(10): 4754-4761. | |
4 | Chen Y Z, Liu B, Zhang Y P, et al. Effects of nitrogen and carbon monoxide on the detonation of hydrogen-air gaseous mixtures [J]. Nuclear Engineering and Design, 2019, 343: 1-10. |
5 | Li Y C, Bi M S, Yan C C, et al. Inerting effect of carbon dioxide on confined hydrogen explosion[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22620-22631. |
6 | 常伟达. 多元混合气体管内爆燃火焰传播特性及火焰抑制研究[D]. 淮南: 安徽理工大学, 2020. |
Chang W D. Study on flame propagation characteristics of multiple mixed gases and flame suppression researches in tube[D]. Huainan: Anhui University of Science & Technology, 2020. | |
7 | 陈鹏, 杨永波, 郭实龙, 等. 金属丝网对甲烷/空气预混火焰传播影响的研究[J]. 中国安全科学学报, 2014, 24(7): 33-36. |
Chen P, Yang Y B, Guo S L, et al. Study on influence of metal mesh on methane/air premixed mixture flame propagation[J]. China Safety Science Journal, 2014, 24(7): 33-36. | |
8 | 张承虎, 范丽佳, 杨煜洁, 等. 聚氨酯障碍对甲烷空气预混火焰传播的影响[J]. 煤气与热力, 2019, 39(11): 35-38, 43. |
Zhang C H, Fan L J, Yang Y J, et al. Influence of polyurethane barrier on methane air premixed flame propagation[J]. Gas & Heat, 2019, 39(11): 35-38, 43. | |
9 | Guo C, Thomas G, Li J, et al. Experimental study of gaseous detonation propagation over acoustically absorbing walls[J]. Shock Waves, 2002, 11(5): 353-359. |
10 | Lv P F, Pang L, Jin J H, et al. Effects of hydrogen addition on the deflagration characteristics of hydrocarbon fuel/air mixture under a mesh aluminium alloy[J]. International Journal of Hydrogen Energy, 2016, 41(18): 7511-7517. |
11 | 贺鸿志. 铝镁合金网状材料对管道内可燃气体爆炸火焰传播影响研究[D]. 杭州: 中国计量大学, 2019. |
He H Z. Effect of Al-Mg alloy mesh material on flame propagation of combustible gas explosion in pipeline[D]. Hangzhou: China University of Metrology, 2019. | |
12 | 贺云龙, 张玉铎, 袁必和, 等. 丝瓜络对甲烷/空气预混气体的阻火抑爆性能[J]. 高压物理学报, 2021, 35(6): 204-211. |
He Y L, Zhang Y D, Yuan B H, et al. Fire and explosion suppression performance of luffa sponge in premixed methane/air gas[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 204-211. | |
13 | Sun J H, Zhao Y, Wei C R, et al. The comparative experimental study of the porous materials suppressing the gas explosion[J]. Procedia Engineering, 2011, 26: 954-960. |
14 | 孙建华. 基于多孔介质的煤矿瓦斯阻隔爆技术研究[D]. 北京: 中国矿业大学(北京), 2011. |
Sun J H. Study on explosion isolating of gas explosion in coal mine base on porous materials[D]. Beijing: China University of Mining & Technology(Beijing), 2011. | |
15 | Teodorczyk A, Lee J H S. Detonation attenuation by foams and wire meshes lining the walls[J]. Shock Waves, 1995, 4(4): 225-236. |
16 | Song X Z, Zuo X C, Yang Z K, et al. The explosion-suppression performance of mesh aluminum alloys and spherical nonmetallic materials on hydrogen-air mixtures[J]. International Journal of Hydrogen Energy, 2020, 45(56): 32686-32701. |
17 | 颜秉健. 爆轰波传播极限判定准则及抑爆条件研究[D]. 上海: 华东理工大学, 2019. |
Yan B J. Study on the criterion for determining the detonation propagation limit and the conditions for suppressing detonation[D]. Shanghai: East China University of Science and Technology, 2019. | |
18 | 胡延栋. 多孔质材料中气相爆轰试验及数值模拟研究[D]. 南京: 南京理工大学, 2017. |
Hu Y D. Experiment and numerical simulation of gaseous detonation in porous materials[D]. Nanjing: Nanjing University of Science and Technology, 2017. | |
19 | Bivol G Y, Golovastov S V, Golub V V. Effect of channel geometry and porous coverage on flame acceleration in hydrogen-air mixture[J]. Process Safety and Environmental Protection, 2021, 151: 128-140. |
20 | Bivol G, Golovastov S. Effects of polyurethane foam on the detonation propagation in stoichiometric hydrogen-air mixture[J]. Process Safety and Environmental Protection, 2019, 130: 14-21. |
21 | Bivol G Y, Golovastov S V. Suppression of hydrogen-air detonation using porous materials in the channels of different cross section[J]. International Journal of Hydrogen Energy, 2021, 46(24): 13471-13483. |
22 | 孙玮康, 陈先锋, 冯梦梦, 等. 金属丝网对甲烷/空气爆燃火焰传播特性的影响[J]. 高压物理学报, 2020, 34(5): 164-173. |
Sun W K, Chen X F, Feng M M, et al. Effect of the wire mesh structure on the flame characteristics of methane/air deflagration[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 164-173. | |
23 | Zhang B, Liu H, Yan B J. Effect of acoustically absorbing wall tubes on the near-limit detonation propagation behaviors in a methane-oxygen mixture[J]. Fuel, 2019, 236: 975-983. |
24 | 陈鹏, 孙永夺. 泡沫金属对甲烷/空气爆燃火焰的淬熄实验研究[J]. 中国安全生产科学技术, 2017, 13(7): 37-41. |
Chen P, Sun Y D. Experiment study on quenching effect of foam metal on methane-air deflagration flame[J]. Journal of Safety Science and Technology, 2017, 13(7): 37-41. | |
25 | 程方明, 常助川, 史合, 等. 金属丝网对甲烷/空气预混火焰管道内传播的影响[J]. 中国安全生产科学技术, 2020, 16(1): 135-140. |
Cheng F M, Chang Z C, Shi H, et al. Influence of wire mesh on propagation of methane/air premixing flame in pipe[J]. Journal of Safety Science and Technology, 2020, 16(1): 135-140. | |
26 | Xie Q F, Wen H C, Ren Z X, et al. Effects of silicone rubber and aerogel blanket-walled tubes on H2/air gaseous detonation[J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 753-761. |
27 | 魏春荣, 张倍瑞, 孙建华, 等. 障碍物对泡沫金属阻抑瓦斯爆炸影响的试验研究[J]. 煤炭科学技术, 2018, 46(7): 134-140. |
Wei C R, Zhang B R, Sun J H, et al. Experimental study on obstacles affected to foam metal to inhibit gas explosion[J]. Coal Science and Technology, 2018, 46(7): 134-140. | |
28 | 肖华华. 管道中氢-空气预混火焰传播动力学实验与数值模拟研究[D]. 合肥: 中国科学技术大学, 2013. |
Xiao H H. Experimental and numerical study of dynamics of premixed hydrogen-air flame propagating in ducts[D]. Hefei: University of Science and Technology of China, 2013. | |
29 | Mcbride B J, Gordon S. Computer program for calculation of complex chemical equilibrium compositions and applications(part Ⅱ): User's manual and program description[J]. Nasa Reference Publications, 1996, 1311: 84-85. |
30 | 魏春荣, 徐敏强, 孙建华, 等. 多孔材料抑制瓦斯爆炸传播的实验及机理[J]. 功能材料, 2012, 43(16): 2247-2250, 2255. |
Wei C R, Xu M Q, Sun J H, et al. Experiment and mechanism of porous materials for suppressing the gas explosion[J]. Journal of Functional Materials, 2012, 43(16): 2247-2250, 2255. | |
31 | 潘振华, 朱跃进, 张彭岗, 等. 狭缝内爆轰波传播模式的实验研究[J]. 推进技术, 2016, 37(7): 1201-1207. |
Pan Z H, Zhu Y J, Zhang P G, et al. An experimental study on propagation modes of gaseous detonation in narrow gap[J]. Journal of Propulsion Technology, 2016, 37(7): 1201-1207. | |
32 | 周崇, 喻健良, 刘润杰, 等. 多层网孔结构抑爆性能的研究进展[J]. 煤矿安全, 2004, 35(3): 6-8. |
Zhou C, Yu J L, Liu R J, et al. Investigation development of the explosion-suppression characters of multiplayer mesh-hole construction[J]. Safety in Coal Mines, 2004, 35(3): 6-8. | |
33 | 孙建华, 曲征, 魏春荣, 等. 泡沫金属抑制瓦斯爆炸火焰的实验及机理研究[J]. 采矿与安全工程学报, 2013, 30(3): 463-467. |
Sun J H, Qu Z, Wei C R, et al. Experimental and mechanism study on gas explosion flame suppressed by foam metal[J]. Journal of Mining & Safety Engineering, 2013, 30(3): 463-467. | |
34 | 武双贺. 多孔材料对管道内爆炸火焰抑制的实验研究[D]. 北京: 北京理工大学, 2018. |
Wu S H. Experimental study on the suppression of explosion flame in pipelines with porous materials[D]. Beijing: Beijing Institute of Technology, 2018. |
[1] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[2] | 王燕, 何佳, 杨晶晶, 林晨迪, 纪文涛. 草酸盐和碳酸氢盐抑制聚乙烯粉尘爆炸特性[J]. 化工学报, 2022, 73(9): 4207-4216. |
[3] | 裴蓓, 康亚祥, 余明高, 郭佳琪, 韦双明, 陈立伟. 点火延迟时间对CO2-超细水雾的抑爆特性影响[J]. 化工学报, 2022, 73(12): 5672-5684. |
[4] | 纪文涛, 李璐, 李忠, 何佳, 杨晶晶, 王燕. 聚磷酸铵抑制PMMA粉尘爆炸特性研究[J]. 化工学报, 2022, 73(1): 461-469. |
[5] | 杨克, 纪虹, 邢志祥, 黄维秋, 王宇, 张平. 含草酸钾的超细水雾抑制甲烷爆炸的特性[J]. 化工学报, 2018, 69(12): 5359-5369. |
[6] | 崔洋洋, 王志荣, 刘明翰, 张锎, 马龙生, 蒋军成. 丝网结构对连通容器气体爆炸的二次抑制效果[J]. 化工学报, 2016, 67(4): 1618-1625. |
[7] | 李青, 白凤武, 张亚南. 碳化硅泡沫陶瓷空气吸热器性能数值模拟[J]. 化工学报, 2014, 65(S1): 217-222. |
[8] | 张文洁, 初广文, 罗勇, 向阳, 邹海魁, 陈建峰. 泡沫陶瓷填料旋转填充床微观混合性能[J]. 化工学报, 2014, 65(8): 2976-2980. |
[9] | 王关晴,罗丹,丁宁,黄雪峰,徐江荣. 稀薄燃气多孔介质燃烧二维火焰数值模拟[J]. 化工学报, 2012, 63(6): 1893-1901. |
[10] | 杨东杰;邱学青;庞煜霞;楼宏铭. 泡沫陶瓷环形填料的流体力学和传质性能 [J]. CIESC Journal, 2005, 56(11): 2077-2081. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||