化工学报 ›› 2016, Vol. 67 ›› Issue (3): 827-832.DOI: 10.11949/j.issn.0438-1157.20151875

• 研究论文 • 上一篇    下一篇

基于KSFDA-SVDD的非线性过程故障检测方法

张汉元, 田学民   

  1. 中国石油大学(华东)信息与控制工程学院, 山东 青岛 266580
  • 收稿日期:2015-12-10 修回日期:2015-12-19 出版日期:2016-03-05 发布日期:2016-01-12
  • 通讯作者: 田学民
  • 基金资助:

    国家自然科学基金项目(61273160,61403418);山东省自然科学基金项目(ZR2014FL016);中央高校基本科研业务费专项资金(14CX06132A)。

Nonlinear process fault detection based on KSFDA and SVDD

ZHANG Hanyuan, TIAN Xuemin   

  1. College of Information and Control Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
  • Received:2015-12-10 Revised:2015-12-19 Online:2016-03-05 Published:2016-01-12
  • Contact: 67
  • Supported by:

    supported by the National Natural Science Foundation of China (61273160, 61403418), the Natural Science Foundation of Shandong Province (ZR2014FL016) and the Fundamental Research Funds for the Central Universities (14CX06132A).

摘要:

慢特征分析(SFA)是一种无监督的线性学习算法,没有考虑过程数据的类别信息和非线性特征。针对此问题,提出一种基于核慢特征判别分析(KSFDA)和支持向量数据描述(SVDD)的非线性过程故障检测方法KSFDA-SVDD。该方法首先利用核技巧将数据从原始空间映射到高维空间,然后通过最大化正常工况数据和故障模式数据之间伪时间序列的时间变化同时最小化正常工况数据内部伪时间序列的时间变化计算判别矩阵,最后利用SVDD描述采用判别矩阵降维后的正常工况数据的分布域,构建监控统计量检测过程故障。在连续搅拌反应器(CSTR)过程上的仿真结果表明所提出方法的故障检测性能优于传统的KPCA方法。

关键词: 慢特征分析, 判别分析, 支持向量数据描述, 非线性过程, 故障检测

Abstract:

Slow feature analysis (SFA) is an unsupervised liner learning algorithm and lacks the ability to consider class label information and data nonlinearity. In order to solve this problem, a novel nonlinear process fault detection method is proposed based on kernel slow feature discriminant analysis and support vector data description (KSFDA-SVDD). Firstly, process data is mapped from the original space into a high dimension feature space via kernel trick. Then, the discriminant matrix that maximizes the temporal variation of between-class pseudo-time series and minimizes the temporal variation of within-class pseudo-time series simultaneously is calculated. Finally, SVDD is applied to describe the distribution region of normal operation data which is projected to the discriminant matrix and one monitoring index is constructed to indicate the occurrence of the abnormal event. Simulation results on the continuous stirring tank reactor (CSTR) process show that the proposed method is more effective than the traditional KPCA method in terms of detecting faults.

Key words: slow feature analysis, discriminant analysis, support vector data description, nonlinear process, fault detection

中图分类号: