化工学报 ›› 2022, Vol. 73 ›› Issue (9): 3983-3993.DOI: 10.11949/0438-1157.20220487
收稿日期:
2022-04-03
修回日期:
2022-05-19
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
雍加望
作者简介:
雍加望(1988—),男,博士,讲师,yongjw@bjut.edu.cn
基金资助:
Jiawang YONG1(), Qianqian ZHAO2, Nenglian FENG2
Received:
2022-04-03
Revised:
2022-05-19
Online:
2022-09-05
Published:
2022-10-09
Contact:
Jiawang YONG
摘要:
为了对质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)系统进行故障诊断以提高系统的安全性和可靠性,针对PEMFC系统的强非线性,在九阶状态空间模型的基础上提出一种滑模观测器实时生成残差,利用故障阈值检测法建立故障特征矩阵检测故障,进而为了隔离故障,引入相对故障敏感度函数建立理论相对故障敏感度矩阵,在系统运行时实时计算各故障相对故障敏感度与理论相对故障敏感度的欧氏距离,最小欧氏距离对应的故障则为系统发生的故障,结果验证了所提出的基于模型的故障诊断方法的有效性,且所构建观测器可以估计PEMFC系统中难以直接测取的状态变量,平均相对误差在6%以内。
中图分类号:
雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993.
Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model[J]. CIESC Journal, 2022, 73(9): 3983-3993.
变量 | 主要定义 | 变量 | 主要定义 |
---|---|---|---|
阳极氢气质量/kg | 供应歧管质量/kg | ||
阴极氧气质量/kg | 空压机转速/(r/min) | ||
阴极水质量/kg | 回流管道压力/Pa | ||
阳极水质量/kg | Vfc | 电堆电压/V | |
供应歧管压力/Pa | vcm | 压缩机电机电压/V | |
阴极氮气质量/kg | Ist | 负载电流/A |
表1 模型主要变量定义
Table 1 Definition of major variables of the model
变量 | 主要定义 | 变量 | 主要定义 |
---|---|---|---|
阳极氢气质量/kg | 供应歧管质量/kg | ||
阴极氧气质量/kg | 空压机转速/(r/min) | ||
阴极水质量/kg | 回流管道压力/Pa | ||
阳极水质量/kg | Vfc | 电堆电压/V | |
供应歧管压力/Pa | vcm | 压缩机电机电压/V | |
阴极氮气质量/kg | Ist | 负载电流/A |
环境温度 | 电堆工作温度 | 氢气供给压力 | 空气供给压力 | 过氧比 |
---|---|---|---|---|
25℃ | 72℃ | 3 atm | 3 atm | 2 |
表2 运行参数设置
Table 2 Operating parameter setting
环境温度 | 电堆工作温度 | 氢气供给压力 | 空气供给压力 | 过氧比 |
---|---|---|---|---|
25℃ | 72℃ | 3 atm | 3 atm | 2 |
故障 | S1 | S2 | S3 | S4 |
---|---|---|---|---|
f1 | 1 | 1 | 1 | 1 |
f2 | 0 | 0 | 0 | 1 |
f3 | 1 | 0 | 1 | 1 |
f4 | 1 | 0 | 1 | 1 |
f5 | 0 | 0 | 0 | 1 |
表3 故障特征矩阵
Table 3 Fault signature matrix
故障 | S1 | S2 | S3 | S4 |
---|---|---|---|---|
f1 | 1 | 1 | 1 | 1 |
f2 | 0 | 0 | 0 | 1 |
f3 | 1 | 0 | 1 | 1 |
f4 | 1 | 0 | 1 | 1 |
f5 | 0 | 0 | 0 | 1 |
故障 | r2/r1 | r3/r1 | … | rn /r1 |
---|---|---|---|---|
f1 | … | |||
f2 | … | |||
f3 | … | |||
fm | … |
表4 理论相对故障敏感度矩阵
Table 4 Theoretical relative fault sensitivity matrix
故障 | r2/r1 | r3/r1 | … | rn /r1 |
---|---|---|---|---|
f1 | … | |||
f2 | … | |||
f3 | … | |||
fm | … |
故障 | r2/ r1 | r3/ r1 | r4/r1 |
---|---|---|---|
f1 | 0.0147 | 0.3681 | 6.86×10-7 |
f2 | 0.3850 | 0.0736 | 2.43×10-4 |
f3 | 0.0071 | 0.1977 | 1.97×10-7 |
f4 | 0.0083 | 0.1895 | 1.81×10-7 |
f5 | 0.0402 | 0.1448 | 3.34×10-8 |
表5 理论相对故障敏感度矩阵结果
Table 5 Theoretical relative fault sensitivity matrix results
故障 | r2/ r1 | r3/ r1 | r4/r1 |
---|---|---|---|
f1 | 0.0147 | 0.3681 | 6.86×10-7 |
f2 | 0.3850 | 0.0736 | 2.43×10-4 |
f3 | 0.0071 | 0.1977 | 1.97×10-7 |
f4 | 0.0083 | 0.1895 | 1.81×10-7 |
f5 | 0.0402 | 0.1448 | 3.34×10-8 |
1 | Song K, Wang Y M, Ding Y H, et al. Assembly techniques for proton exchange membrane fuel cell stack: a literature review[J]. Renewable and Sustainable Energy Reviews, 2022, 153: 111777. |
2 | Wu D, Li K, Gao Y, et al. Design and simulation of proton exchange membrane fuel cell system[J]. Energy Reports, 2021, 7: 522-530. |
3 | Yang D, Wang Y J, Chen Z H. Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13508-13522. |
4 | Li X Y, Wang Y J, Yang D, et al. Adaptive energy management strategy for fuel cell/battery hybrid vehicles using Pontryagin’s minimal principle[J]. Journal of Power Sources, 2019, 440: 227105. |
5 | Deng H W, Li Q, Cui Y L, et al. Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19357-19369. |
6 | Won J, Oh H, Hong J, et al. Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells[J]. Renewable Energy, 2021, 180: 343-352. |
7 | 陈维荣, 刘嘉蔚, 李奇, 等. 质子交换膜燃料电池故障诊断方法综述及展望[J]. 中国电机工程学报, 2017, 37(16): 4712-4721, 4896. |
Chen W R, Liu J W, Li Q, et al. Review and prospect of fault diagnosis methods for proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2017, 37(16): 4712-4721, 4896. | |
8 | Wang J B, Yang B, Zeng C Y, et al. Recent advances and summarization of fault diagnosis techniques for proton exchange membrane fuel cell systems: a critical overview[J]. Journal of Power Sources, 2021, 500: 229932. |
9 | Yuan H, Dai H F, Wei X Z, et al. Model-based observers for internal states estimation and control of proton exchange membrane fuel cell system: a review[J]. Journal of Power Sources, 2020, 468: 228376. |
10 | Lee W Y, Oh H, Kim M, et al. Hierarchical fault diagnostic method for a polymer electrolyte fuel cell system[J]. International Journal of Hydrogen Energy, 2020, 45(47): 25733-25746. |
11 | Olteanu S C, Aitouche A, Oueidat M, et al. Fuel cell diagnosis using Takagi-Sugeno observer approach[C]//2012 International Conference on Renewable Energies for Developing Countries (REDEC). Beirut, Lebanon: IEEE, 2012: 1-7. |
12 | Jeong H, Park B, Park S, et al. Fault detection and identification method using observer-based residuals[J]. Reliability Engineering & System Safety, 2019, 184: 27-40. |
13 | de Lira S, Puig V, Quevedo J, et al. LPV observer design for PEM fuel cell system: application to fault detection[J]. Journal of Power Sources, 2011, 196(9): 4298-4305. |
14 | Sinha V, Mondal S. Adaptive unknown input observer approach for multi-fault diagnosis of PEM fuel cell system with time-delays[J]. Journal of Control and Decision, 2021, 8(2): 222-232. |
15 | Lim I S, Park J Y, Choi E J, et al. Efficient fault diagnosis method of PEMFC thermal management system for various current densities[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2543-2554. |
16 | 蒋璐. 燃料电池水故障诊断方法研究[D]. 成都: 西南交通大学, 2019. |
Jiang L. Research on water fault diagnosis method for fuel cell[D]. Chengdu: Southwest Jiaotong University, 2019. | |
17 | 刘嘉蔚, 李奇, 陈维荣, 等. 基于概率神经网络和线性判别分析的PEMFC水管理故障诊断方法研究[J]. 中国电机工程学报, 2019, 39(12): 3614-3622. |
Liu J W, Li Q, Chen W R, et al. Research on PEMFC water management fault diagnosis method based on probabilistic neural network and linear discriminant analysis[J]. Proceedings of the CSEE, 2019, 39(12): 3614-3622. | |
18 | 王兴娣. 基于数据驱动的质子交换膜燃料电池电堆故障诊断研究[D]. 成都: 西南交通大学, 2018. |
Wang X D. Study on data-driven fault diagnosis for proton exchange membrane fuel cell stack[D]. Chengdu: Southwest Jiaotong University, 2018. | |
19 | Hua J F, Li J Q, Ouyang M G, et al. Proton exchange membrane fuel cell system diagnosis based on the multivariate statistical method[J]. International Journal of Hydrogen Energy, 2011, 36(16): 9896-9905. |
20 | Li Z L, Outbib R, Hissel D, et al. Online diagnosis of PEMFC by analyzing individual cell voltages[C]//2013 European Control Conference (ECC). Zurich, Switzerland: IEEE, 2013: 2439-2444. |
21 | Sethi A, Verstraete D. A comparative study of wavelet-based descriptors for fault diagnosis of self-humidified proton exchange membrane fuel cells[J]. Fuel Cells, 2020, 20(2): 131-142. |
22 | Zhou S, Jin J, Wei Y H. Research on online diagnosis method of fuel cell centrifugal air compressor surge fault[J]. Energies, 2021, 14(11): 3071. |
23 | Ibrahim M, Antoni U, Steiner N Y, et al. Signal-based diagnostics by wavelet transform for proton exchange membrane fuel cell[J]. Energy Procedia, 2015, 74: 1508-1516. |
24 | Liu J W, Li Q, Chen W R, et al. A discrete hidden Markov model fault diagnosis strategy based on K-means clustering dedicated to PEM fuel cell systems of tramways[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12428-12441. |
25 | Pukrushpan J T. Modeling and control of fuel cell systems and fuel processors[D]. Ann Arbor: University of Michigan, 2003. |
26 | 李飞, 赵冬冬, 皇甫宜耿, 等. 适用于PEMFC系统状态估计的鲁棒非线性观测器[J]. 电源学报, 2019, 17(2): 19-25. |
Li F, Zhao D D, Huangfu Y G, et al. Robust nonlinear observer for state estimation of PEMFC system[J]. Journal of Power Supply, 2019, 17(2): 19-25. | |
27 | 展茂胜. 质子交换膜燃料电池热管理系统的优化与控制[D]. 济南: 山东大学, 2020. |
Zhan M S. Optimization and control of thermal management system for PEMFC[D]. Jinan: Shandong University, 2020. | |
28 | Ding S. Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[M]. Berlin Heidelberg: Springer, 2008. |
29 | Salim R, Noura H, Fardoun A. Fault diagnosis of a commercial PEM Fuel cell system using LMS AMESim[C]//2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). Sharjah, United Arab Emirates: IEEE, 2017: 1-6. |
30 | Aitouche A, Yang Q, Ould Bouamama B. Fault detection and isolation of PEM fuel cell system based on nonlinear analytical redundancy[J]. The European Physical Journal Applied Physics, 2011, 54(2): 23408. |
31 | Schmid M, Gebauer E, Hanzl C, et al. Active model-based fault diagnosis in reconfigurable battery systems[J]. IEEE Transactions on Power Electronics, 2021, 36(3): 2584-2597. |
32 | Escobet T, Feroldi D, de Lira S, et al. Model-based fault diagnosis in PEM fuel cell systems[J]. Journal of Power Sources, 2009, 192(1): 216-223. |
33 | 党常会, 朱海潮, 章林柯, 等. 基于欧氏距离的基本信任函数确立方法[J]. 舰船科学技术, 2012, 34(8): 87-89, 94. |
Dang C H, Zhu H C, Zhang L K, et al. A method to establish mass function based on euclidean distance[J]. Ship Science and Technology, 2012, 34(8): 87-89, 94. |
[1] | 张逸豪, 王振雷. 基于最大信息系数的分组支持向量数据描述故障检测[J]. 化工学报, 2023, 74(9): 3865-3878. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[4] | 宋冰, 郑城风, 侍洪波, 陶阳, 谭帅. 基于VAE-OCCA的质量相关故障检测方法研究[J]. 化工学报, 2023, 74(4): 1630-1638. |
[5] | 杨明辉, 刘晓月, 邓晓刚, 廖明燕, 侯春望. 基于加权概率CVDA的动态化工系统微小故障检测[J]. 化工学报, 2022, 73(9): 3963-3972. |
[6] | 郭金玉, 王哲, 李元. 基于核熵独立成分分析的故障检测方法[J]. 化工学报, 2022, 73(8): 3647-3658. |
[7] | 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119. |
[8] | 郭金玉, 李文涛, 李元. 在线压缩KECA的自适应算法在故障检测中的应用[J]. 化工学报, 2021, 72(8): 4227-4238. |
[9] | 李元, 杨东昇, 赵丽颖, 张成. 层次变分高斯混合模型与主多项式分析的故障检测策略[J]. 化工学报, 2021, 72(3): 1616-1626. |
[10] | 王晓慧, 王延江, 邓晓刚, 张政. 基于加权深度支持向量数据描述的工业过程故障检测[J]. 化工学报, 2021, 72(11): 5707-5716. |
[11] | 王茹, 沈永超, 卫东, 郭倩. 基于直流内阻和交流阻抗特性的PEMFC水管理状态分析[J]. 化工学报, 2020, 71(7): 3247-3257. |
[12] | 邓明月, 刘建昌, 许鹏, 谭树彬, 商亮亮. 基于KECA的非线性工业过程故障检测与诊断新方法[J]. 化工学报, 2020, 71(5): 2151-2163. |
[13] | 韩宇, 李俊芳, 高强, 田宇, 禹国刚. 基于故障判别增强KECA算法的故障检测[J]. 化工学报, 2020, 71(3): 1254-1263. |
[14] | 徐静,王振雷,王昕. 基于非线性动态全局局部保留投影算法的化工过程故障检测[J]. 化工学报, 2020, 71(12): 5655-5663. |
[15] | 孙中建,杨博,齐楚,李宏光. 面向工业混杂系统故障检测的扩展数据逻辑分析方法[J]. 化工学报, 2020, 71(11): 5237-5245. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 172
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 277
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||