化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3109-3119.doi: 10.11949/0438-1157.20220210
Kun WANG(),Hongbo SHI(
),Shuai TAN,Bing SONG,Yang TAO
摘要:
传统的邻域保持嵌入(neighborhood preserving embedding,NPE)算法通过k近邻(k-nearest neighbors,k-NN)方法选择邻域进行重构来实现降维。但在实际工业过程中采集的样本具有时序相关性,仅仅通过欧氏距离选择近邻样本不能充分反映数据中包含的信息,从而影响检测效果。因此,提出一种局部时差约束邻域保持嵌入(local time difference constrained neighborhood preserving embedding,LTDCNPE)算法,充分考虑样本间的时间和空间关系,从而建立准确的故障检测模型。首先,该算法在固定尺度的时间窗内,根据样本的时序关系和空间特征挑选出邻域。其次,利用样本间的时间差异为邻域样本进行加权,使数据特征保留了高维空间的局部结构。然后,对降维后得到的主元空间和残差空间构建
中图分类号:
1 | Liu J X, Chen J H, Wang D. Linear and exponential fault-assistant feature extraction methods for process monitoring[J]. Control Engineering Practice, 2021, 109(3): 104732. |
2 | 彭开香, 张传放, 马亮, 等. 面向系统层级的复杂工业过程全息故障诊断[J]. 化工学报, 2019, 70(2): 590-598. |
Peng K X, Zhang C F, Ma L, et al. System-levels-based holographic fault diagnosis for complex industrial processes[J]. CIESC Journal, 2019, 70(2): 590-598. | |
3 | Yao L, Ge Z Q. Refining data-driven soft sensor modeling framework with variable time reconstruction[J]. Journal of Process Control, 2020, 87: 91-107. |
4 | 蓝艇, 童楚东, 史旭华. 变量加权型主元分析算法及其在故障检测中的应用[J]. 化工学报, 2017, 68(8): 3177-3182. |
Lan T, Tong C D, Shi X H. Variable weighted principal component analysis algorithm and its application in fault detection[J]. CIESC Journal, 2017, 68(8): 3177-3182. | |
5 | Qin S J, Chiang L H. Advances and opportunities in machine learning for process data analytics[J]. Computers & Chemical Engineering, 2019, 126: 465-473. |
6 | Chang Y Q, Ma R X, Zhao L P, et al. Online operating performance evaluation for the plant-wide industrial process based on a three-level and multi-block method[J]. The Canadian Journal of Chemical Engineering, 2019, 97(S1): 1371-1385. |
7 | Song B, Shi H B, Tan S, et al. Multisubspace orthogonal canonical correlation analysis for quality-related plant-wide process monitoring[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6368-6378. |
8 | Tao Y, Shi H B, Song B, et al. A novel dynamic weight principal component analysis method and hierarchical monitoring strategy for process fault detection and diagnosis[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7994-8004. |
9 | Zhou P, Zhang R Y, Liang M Y, et al. Fault identification for quality monitoring of molten iron in blast furnace ironmaking based on KPLS with improved contribution rate[J]. Control Engineering Practice, 2020, 97: 104354. |
10 | Li Z C, Yan X F. Fault-relevant optimal ensemble ICA model for non-Gaussian process monitoring[J]. IEEE Transactions on Control Systems Technology, 2019, 28(6): 2581-2590. |
11 | 常玉清, 王姝, 王福利, 等. 基于多PCA模型的过程监测方法[J]. 仪器仪表学报, 2014, 35(4): 901-908. |
Chang Y Q, Wang S, Wang F L, et al. Process monitoring method based on multiple PCA models[J]. Chinese Journal of Scientific Instrument, 2014, 35(4): 901-908. | |
12 | Talmon R, Mallat S, Zaveri H, et al. Manifold learning for latent variable inference in dynamical systems[J]. IEEE Transactions on Signal Processing, 2015, 63(15): 3843-3856. |
13 | Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering[M]//Advances in Neural Information Processing Systems. Massachusetts, USA: The MIT Press, 2002. |
14 | Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326. |
15 | Tenenbaum J B, Silva V D, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323. |
16 | He X F, Niyogi P. Locality preserving projections[J]. Advances in Neural Information Processing Systems, 2004, 16(16): 153-160. |
17 | He X F, Cai D, Yan S C, et al. Neighborhood preserving embedding[C]//Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. Beijing: IEEE, 2005: 1208-1213. |
18 | Miao A M, Ge Z Q, Song Z H, et al. Nonlocal structure constrained neighborhood preserving embedding model and its application for fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 142: 184-196. |
19 | Huang P F, Tao Y, Song B, et al. Tensor sequence component analysis for fault detection in dynamic process[J]. The Canadian Journal of Chemical Engineering, 2020, 98(1): 225-236. |
20 | Song B, Tan S, Shi H B. Process monitoring via enhanced neighborhood preserving embedding[J]. Control Engineering Practice, 2016, 50: 48-56. |
21 | Tong C D, Lan T, Shi X H, et al. Statistical process monitoring based on nonlocal and multiple neighborhoods preserving embedding model[J]. Journal of Process Control, 2018, 65: 34-40. |
22 | Ge Z Q, Chen X R. Dynamic probabilistic latent variable model for process data modeling and regression application[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 323-331. |
23 | Ku W F, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196. |
24 | Li Y, Bi Y, Sun J, et al. Multi-class evaluation using dynamic neighborhood preserving embedding method[J]. Journal of Computational Information Systems, 2015, 11(19): 7001-7006. |
25 | 赵小强, 牟淼. 基于GSFA-GNPE的动态-静态联合指标间歇过程监控[J]. 上海交通大学学报, 2021, 55(11): 1417-1428. |
Zhao X Q, Mou M. Batch process monitoring with dynamic-static joint indicator based on GSFA-GNPE[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1417-1428. | |
26 | 杨健, 宋冰, 谭帅, 等. 时序约束NPE算法在化工过程故障检测中的应用[J]. 化工学报, 2016, 67(12): 5131-5139. |
Yang J, Song B, Tan S, et al. Time constrained NPE for fault detection in chemical processes[J]. CIESC Journal, 2016, 67(12): 5131-5139. | |
27 | Odiowei P P, Cao Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. Computer Aided Chemical Engineering, 2009, 27: 1557-1562. |
28 | Chen Q, Wynne R J, Goulding P, et al. The application of principal component analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8(5): 531-543. |
29 | Liang J. Multivariate statistical process monitoring using kernel density estimation[J]. Developments in Chemical Engineering and Mineral Processing, 2008, 13(1/2): 185-192. |
30 | Song B, Ma Y X, Shi H B. Multimode process monitoring using improved dynamic neighborhood preserving embedding[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 135:17-30. |
31 | Zhao X Q, Wang T. Tensor dynamic neighborhood preserving embedding algorithm for fault diagnosis of batch process[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 162: 94-103. |
32 | Bathelt A, Ricker N L, Jelali M. Revision of the Tennessee Eastman process model[J]. IFAC-PapersOnLine, 2015, 48(8): 309-314. |
33 | Rong M Y, Shi H B, Tan S. Large-scale supervised process monitoring based on distributed modified principal component regression[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18223-18240. |
34 | Lyman P R, Georgakis C. Plant-wide control of the Tennessee Eastman problem[J]. Computers & Chemical Engineering, 1995, 19(3): 321-331. |
35 | Yu J B. Local and global principal component analysis for process monitoring[J]. Journal of Process Control, 2012, 22(7): 1358-1373. |
36 | Saul L, Roweis S. Think globally, fit locally: unsupervised learning of low dimensional manifold[J]. Journal of Machine Learning Research, 2003, 4: 119-155. |
37 | 蒋浩天, E.L. 拉塞尔, R.D. 布拉茨, 等. 工业系统的故障检测与诊断[M]. 段建民, 译. 北京: 机械工业出版社, 2003. |
Chiang L H, Russell E L, Braatz R D, et al. Fault Detection and Diagnosis in Industrial Systems[M]. Duan J M, trans. Beijing: China Machine Press, 2003. |
[1] | 杨岭, 崔国民, 周志强, 肖媛. 精细搜索策略应用于质量交换网络综合[J]. 化工学报, 2022, 73(7): 3145-3155. |
[2] | 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173. |
[3] | 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165. |
[4] | 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723. |
[5] | 张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672. |
[6] | 王建松, 许锋, 罗雄麟. 化工过程多回路PID控制系统模式切换参数自整定[J]. 化工学报, 2022, 73(4): 1647-1657. |
[7] | 张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646. |
[8] | 高欢, 丁国良, 周发贤, 庄大伟. R410A制冷剂在润滑油中的动态析出特性的研究[J]. 化工学报, 2022, 73(3): 1054-1062. |
[9] | 张建飞, 林嘉奖, 罗雄麟, 许锋. 重油催化裂化装置产品分布调控与优化模拟分析[J]. 化工学报, 2022, 73(3): 1232-1245. |
[10] | 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269. |
[11] | 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758. |
[12] | 张成, 潘立志, 李元. 基于加权统计特征KICA的故障检测与诊断方法[J]. 化工学报, 2022, 73(2): 827-837. |
[13] | 徐健玮, 梁颖宗, 罗向龙, 陈健勇, 杨智, 陈颖. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444. |
[14] | 郭金玉, 李文涛, 李元. 在线压缩KECA的自适应算法在故障检测中的应用[J]. 化工学报, 2021, 72(8): 4227-4238. |
[15] | 卢道铭, 唐钊艇, 范怡平, 卢春喜. 大差异颗粒分级再生设备的性能研究[J]. 化工学报, 2021, 72(8): 4184-4195. |
|