[1] |
CHIANG L H, BRAATZ R D, RUSSELL E L. Fault Detection and Diagnosis in Industrial Systems[M]. Springer Science & Business Media, 2001.
|
[2] |
QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36 (2): 220-234.
|
[3] |
王海清, 宋执环, 王慧. PCA 过程监测方法的故障检测行为分析[J]. 化工学报, 2002, 53 (3): 297-301. WANG H Q, SONG Z H, WANG H. Fault detection behavior analysis of PCA-based process monitoring approach[J]. Journal of Chemical Industry and Engineering (China), 2002, 53 (3): 297-301.
|
[4] |
LI G, QIN S J, ZHOU D. Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46 (1): 204-210.
|
[5] |
SCHÖLKOPF B, SMOLA A, MÜLLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10 (5): 1299-1319.
|
[6] |
TENENBAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290 (5500): 2319-2323.
|
[7] |
ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323-2326.
|
[8] |
BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15 (6): 1373-1396.
|
[9] |
HE X F, NIYOGI P. Locality preserving projections[C]//Proceedings of Advances in Neural Information Processing Systems. MIT Press, 2004: 153-160.
|
[10] |
HU K, YUAN J. Multivariate statistical process control based on multiway locality preserving projections[J]. Journal of Process Control, 2008, 18 (7): 797-807.
|
[11] |
ZHANG M G, GE Z Q, SONG Z H, et al. Global-local structure analysis model and its application for fault detection and identification[J]. Industrial & Engineering Chemistry Research, 2011, 50 (11): 6837-6848.
|
[12] |
AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54 (11): 4311-4322.
|
[13] |
马小虎, 谭延琪. 基于鉴别稀疏保持嵌入的人脸识别算法[J]. 自动化学报, 2014, 40 (1): 73-82. MA X H, TAN Y Q. Face recognition based on discriminant sparsity preserving embedding[J]. Acta Automatica Sinica, 2014, 40 (1): 73-82.
|
[14] |
QIAO L, CHEN S, TAN X. Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition, 2010, 43 (1): 331-341.
|
[15] |
WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2): 210-227.
|
[16] |
KU W, STORER R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30 (1): 179-196.
|
[17] |
QIN S J. Statistical process monitoring: basics and beyond[J]. Journal of Chemometrics, 2003, 17 (8/9): 480-502.
|
[18] |
CHEN Q, WYNNE R J, GOULDING P, et al. The application of principal component analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8 (5): 531-543.
|
[19] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17 (3): 245-255.
|
[20] |
LEE J M, QIN S J, LEE I B. Fault detection and diagnosis based on modified independent component analysis[J]. AIChE Journal, 2006, 52 (10): 3501-3514.
|