化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1297-1309.DOI: 10.11949/0438-1157.20190677
潘帅1(),纪常伟1,2(),汪硕峰1,2,王兵1,孙洁洁1,戚朋飞1
收稿日期:
2019-06-17
修回日期:
2019-08-27
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
纪常伟
作者简介:
潘帅(1995—),男,硕士研究生,基金资助:
Shuai PAN1(),Changwei JI1,2(),Shuofeng WANG1,2,Bing WANG1,Jiejie SUN1,Pengfei QI1
Received:
2019-06-17
Revised:
2019-08-27
Online:
2020-03-05
Published:
2020-03-05
Contact:
Changwei JI
摘要:
动力电池老化容易引发荷电状态不准、退役电池筛选困难以及热安全性等问题,限制了电动汽车及废旧电池梯次利用的发展。而研究高比能量电池的老化特性,对比分析多种环境、多种条件下废旧电池的电热性能变化有助于为解决上述问题提供理论依据,因此基于动力电池测试系统对其进行了实验研究与讨论。研究表明:电池随着循环次数增加,有效容量和能量逐渐衰减,能量效率逐渐降低,底部截面发生膨胀;随着电池老化程度的增加,其倍率性能、环境温度适应性均会变差,内阻、内阻温度敏感度明显增大;电池电性能的变化直接影响其热性能,电池的工作温度以及温升速率与新电池相比明显增加,新旧电池工作温度的差异在低温环境或高倍率放电的条件下更为严重。
中图分类号:
潘帅, 纪常伟, 汪硕峰, 王兵, 孙洁洁, 戚朋飞. 废旧三元动力电池电热特性的实验研究[J]. 化工学报, 2020, 71(3): 1297-1309.
Shuai PAN, Changwei JI, Shuofeng WANG, Bing WANG, Jiejie SUN, Pengfei QI. Experimental study on electro-thermal characteristics of aged power batteries with ternary material[J]. CIESC Journal, 2020, 71(3): 1297-1309.
名称 | 规格 |
---|---|
正极材料 | 三元材料(NCA) |
负极材料 | 层状石墨 |
半径 | 21 mm |
高度 | 70 mm |
质量 | 69 g |
能量密度 | 268 W·h·kg-1 |
标称容量 | 5000 mA·h |
标称电压 | 3.63 V |
最大充电电流 | 1.00 C |
最大放电电流 | 1.50 C |
充电截止电压 | 4.20 V |
放电截止电压 | 2.50 V |
工作适宜温度范围 | 0~45℃ |
表1 21700电池的参数规格
Table 1 Specification of parameters for 21700 battery
名称 | 规格 |
---|---|
正极材料 | 三元材料(NCA) |
负极材料 | 层状石墨 |
半径 | 21 mm |
高度 | 70 mm |
质量 | 69 g |
能量密度 | 268 W·h·kg-1 |
标称容量 | 5000 mA·h |
标称电压 | 3.63 V |
最大充电电流 | 1.00 C |
最大放电电流 | 1.50 C |
充电截止电压 | 4.20 V |
放电截止电压 | 2.50 V |
工作适宜温度范围 | 0~45℃ |
循环次数 | SOH/% | 峰高度 | |||
---|---|---|---|---|---|
峰① | 峰② | 峰③ | 峰④ | ||
0 | 100.0 | 6.057 | 9.832 | 6.057 | 14.112 |
50 | 94.5 | 6.057 | 9.528 | 6.057 | 14.072 |
100 | 88.0 | 5.980 | 8.934 | 5.984 | 13.973 |
150 | 77.8 | 5.582 | 7.483 | 5.625 | 11.940 |
200 | 59.7 | 峰形消失 | 6.231 | 5.234 | 11.129 |
250 | 29.8 | 峰形消失 | 5.056 | 5.056 | 8.647 |
表2 峰顶点高度的变化
Table 2 Height variation of peak points
循环次数 | SOH/% | 峰高度 | |||
---|---|---|---|---|---|
峰① | 峰② | 峰③ | 峰④ | ||
0 | 100.0 | 6.057 | 9.832 | 6.057 | 14.112 |
50 | 94.5 | 6.057 | 9.528 | 6.057 | 14.072 |
100 | 88.0 | 5.980 | 8.934 | 5.984 | 13.973 |
150 | 77.8 | 5.582 | 7.483 | 5.625 | 11.940 |
200 | 59.7 | 峰形消失 | 6.231 | 5.234 | 11.129 |
250 | 29.8 | 峰形消失 | 5.056 | 5.056 | 8.647 |
循环次数 | SOH/% | 曲线面积 | |||
---|---|---|---|---|---|
峰① | 峰② | 峰③ | 峰④ | ||
0 | 100.0 | 0.724 | 2.101 | 0.988 | 0.964 |
50 | 94.5 | 0.703 | 1.833 | 0.981 | 0.950 |
100 | 88.0 | 0.643 | 1.773 | 0.980 | 0.942 |
150 | 77.8 | 0.556 | 1.574 | 0.926 | 0.919 |
200 | 59.7 | 0.442 | 1.233 | 0.873 | 0.894 |
250 | 29.8 | 0.203 | 0.863 | 0.870 | 0.783 |
表3 曲线面积的变化
Table 3 Area variation of curves
循环次数 | SOH/% | 曲线面积 | |||
---|---|---|---|---|---|
峰① | 峰② | 峰③ | 峰④ | ||
0 | 100.0 | 0.724 | 2.101 | 0.988 | 0.964 |
50 | 94.5 | 0.703 | 1.833 | 0.981 | 0.950 |
100 | 88.0 | 0.643 | 1.773 | 0.980 | 0.942 |
150 | 77.8 | 0.556 | 1.574 | 0.926 | 0.919 |
200 | 59.7 | 0.442 | 1.233 | 0.873 | 0.894 |
250 | 29.8 | 0.203 | 0.863 | 0.870 | 0.783 |
循环次数 | SOH/% | 峰顶点对应电压 | |||
---|---|---|---|---|---|
峰① | 峰② | 峰③ | 峰④ | ||
0 | 100.0 | 3.430 | 3.626 | 3.925 | 4.104 |
50 | 94.5 | 3.439 | 3.636 | 3.925 | 4.106 |
100 | 88.0 | 3.450 | 3.639 | 3.926 | 4.108 |
150 | 77.8 | 3.461 | 3.639 | 3.929 | 4.112 |
200 | 59.7 | 峰形消失 | 3.655 | 3.929 | 4.112 |
250 | 29.8 | 峰形消失 | 3.685 | 3.908 | 4.112 |
表4 峰顶点对应电压的变化
Table 4 Voltage variation corresponding to peak points
循环次数 | SOH/% | 峰顶点对应电压 | |||
---|---|---|---|---|---|
峰① | 峰② | 峰③ | 峰④ | ||
0 | 100.0 | 3.430 | 3.626 | 3.925 | 4.104 |
50 | 94.5 | 3.439 | 3.636 | 3.925 | 4.106 |
100 | 88.0 | 3.450 | 3.639 | 3.926 | 4.108 |
150 | 77.8 | 3.461 | 3.639 | 3.929 | 4.112 |
200 | 59.7 | 峰形消失 | 3.655 | 3.929 | 4.112 |
250 | 29.8 | 峰形消失 | 3.685 | 3.908 | 4.112 |
1 | Sack T, Matty T. Li-ion battery technology for compact high power sources (CHPS) [J]. J. Power Sources, 2001, 96(1): 47-51. |
2 | Gerssen-Gondelach S J, Faaij A P C. Performance of batteries for electric vehicles on short and longer term[J]. Journal of Power Sources, 2012, 212: 111-129. |
3 | Sakti A, Azevedo I M L, Fuchs E R H, et al. Consistency and robustness of forecasting for emerging technologies: the case of Li-ion batteries for electric vehicles[J]. Energy Policy, 2017, 106: 415-426. |
4 | 叶飞鹏,王莉,连芳,等. 钠离子电池研究进展[J]. 化工进展, 2013, 32(8): 1789-1795. |
Ye F P,Wang L,Lian F,et al. Advance in Na-ion batteries[J]. Chemical Industry and Engineering Progress, 2013, 32(8): 1789-1795. | |
5 | 沈佳妮, 贺益君, 马紫峰. 基于模型的锂离子电池SOC及SOH估计方法研究进展[J]. 化工学报, 2018, 69(1): 309-316. |
Shen J N, He Y J, Ma Z F. Progress of model based SOC and SOH estimation methods for lithium-ion battery[J]. CIESC Journal, 2018, 69(1): 309-316. | |
6 | 贺理珀, 孙淑英, 于建国. 退役锂离子电池中有价金属回收研究进展[J]. 化工学报, 2018, 69(1): 327-340. |
He L P, Sun S Y, Yu J G. Review on processes and technologies for recovery of valuable metals from spent lithium-ion batteries[J]. CIESC Journal, 2018, 69(1): 327-340. | |
7 | Li D, Danilov D L, Zwikirsch B, et al. Modeling the degradation mechanisms of C6/LiFePO4 batteries[J]. Journal of Power Sources, 2018, 375: 106-117. |
8 | Birkl C R, Roberts M R, Mcturk E, et al. Degradation diagnostics for lithium ion cells[J]. J. Power Sources, 2017, 341: 373-386. |
9 | Barré A, Deguilhem B, Sébastien G, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241(11): 680-689. |
10 | 张克宇, 姚耀春. 锂离子电池磷酸铁锂正极材料的研究进展[J]. 化工进展, 2015, 34(1): 166-172. |
Zhang K Y, Yao Y C. Research progress in LiFePO4 cathode material for lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 166-172. | |
11 | 王运灿,罗琳,刘钰,等. 锂离子电池聚合物正极材料研究进展[J]. 化工进展, 2013, 32(1): 134-139. |
Wang Y C,Luo L,Liu Y,et al. Research development on polymer cathode material for lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 134-139. | |
12 | Eddahech A, Briat O, Vinassa J M. Performance comparison of four lithium-ion battery technologies under calendar aging[J]. Energy, 2015, 84: 542-550. |
13 | 徐晶. 梯次利用锂离子电池容量和内阻变化特性研究[D]. 北京: 北京交通大学, 2014. |
Xu J. Research on the variation characteristics of capacity and internal resistance of lithium-ion batteries echelon use[D]. Beijing: Beijing Jiaotong University, 2014. | |
14 | Wang K, Gao F, Zhu Y, et al. Internal resistance and heat generation of soft package Li4Ti5O12 battery during charge and discharge[J]. Energy, 2018, 149: 364-374. |
15 | 时玮, 张言茹, 陈大分, 等. 锰酸锂动力电池寿命测试方法[J]. 汽车工程, 2015, 37(1): 67-71. |
Shi W, Zhang Y R, Chen D F, et al. Lifespan test method for LiMn2O4 traction batteries[J]. Automotive Engineering, 2015, 37(1): 67-71. | |
16 | Gao Y, Jiang J, Zhang C, et al. Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode[J]. Journal of Power Sources, 2018, 400: 641-651. |
17 | Gao Y, Jiang J, Zhang C, et al. Lithium-ion battery aging mechanisms and life model under different charging stresses[J]. Journal of Power Sources, 2017, 356: 103-114. |
18 | Ma Z, Jiang J, Shi W, et al. Investigation of path dependence in commercial lithium-ion cells for pure electric bus applications: aging mechanism identification[J]. Journal of Power Sources, 2015, 274(3): 29-40. |
19 | Ouyang M, Chu Z, Lu L, et al. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles[J]. Journal of Power Sources, 2015, 286: 309-320. |
20 | Zhang Y, Wang C Y, Tang X. Cycling degradation of an automotive LiFePO4, lithium-ion battery[J]. Journal of Power Sources, 2011, 196(3): 1513-1520. |
21 | Börner M, Friesen A, Grützke M, et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 382-392. |
22 | Doughty D H, Crafts C C. FreedomCAR: electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications: SAND 2005-3123 [R]. Sandia National Laboratories, 2006. |
23 | Yang F, Wang D, Zhao Y, et al. A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries[J]. Energy, 2018, 145: 486-495. |
24 | 张熙贵, 张建, 杨传铮, 等. LiMeO2材料中锂和镍原子混排的模拟和实验研究[J]. 无机材料学报, 2010, 25(1): 8-12. |
Zhang X G, Zhang J, Yang C Z, et al. Simulation and experimental study on mixed arrange of Li/Ni atoms in LiMeO2 materials[J]. Journal of Inorganic Materials, 2010, 25(1): 8-12. | |
25 | 彭继明, 陈玉华, 刘世成, 等. 不同镍钴锰比对xLi2MnO3-(1-x)LiMO2正极材料的结构和电化学性能的影响[J]. 化工学报, 2016, 67(7): 2950-2955. |
Peng J M, Chen Y H, Liu S C, et al. Effect of Ni/Co/Mn molar ratio on structure and electrochemical properties of xLi2MnO3-(1-x)LiMO2 cathode material[J]. CIESC Journal, 2016, 67(7): 2950-2955. | |
26 | 肖忠良, 胡超明, 宋刘斌, 等. 正极材料LiNi0.8Co0.1Mn0.1O2的合成工艺优化及电化学性能[J]. 化工学报, 2017, 68(4): 1653-1659. |
Xiao Z L, Hu C M, Song L B, et al. Optimization for synthesis technology of LiNi0.8Co0.1Mn0.1O2 cathode material and electrochemical performance[J]. CIESC Journal, 2017, 68(4): 1653-1659. | |
27 | Li W, Liu X, Celio H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries: a comprehensive evaluation on long-term cyclability[J]. Advanced Energy Materials, 2018, 8(15): 1703154. |
28 | Shin J S, Han C H, Jung U H, et al. Effect of Li2CO3 additive on gas generation in lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1): 47-52. |
29 | 颜雪冬, 马兴立, 李维义, 等. 浅析软包装锂离子电池胀气问题[J]. 电源技术, 2013, 37(9): 1536-1538. |
Yan X D, Ma X L, Li W Y, et al. Analysis of swollen problem in soft packing lithium-ion batteries[J]. Chinese Journal of Power Sources, 2013, 37(9): 1536-1538. | |
30 | Anseán D, Dubarry M, Devie A, et al. Fast charging technique for high power LiFePO4 batteries: a mechanistic analysis of aging[J]. Journal of Power Sources, 2016, 321: 201-209. |
31 | Han X, Ouyang M, Lu L, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54. |
32 | 郭琦沛, 张彩萍, 高洋, 等. 基于容量增量曲线的三元锂离子电池健康状态估计方法[J]. 全球能源互联网, 2018, 1(2): 82-89. |
Guo Q P, Zhang C P, Gao Y, et al. Incremental capacity curve based state of health estimation for LNMCO lithium-ion batteries[J]. Journal of Global Energy Interconnection, 2018, 1(2): 82-89. | |
33 | 张昊. 基于IC曲线特征参数的锂离子电池SOH估计及DSP实现[D]. 北京: 北京交通大学,2018. |
Zhang H. SOH estimation and DSP implementation of lithium ion battery based on characteristic parameters of IC curve[D]. Beijing: Beijing Jiaotong University, 2018. | |
34 | Dubarry M, Truchot C, Cugnet M, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications (Part I): Initial characterizations[J]. Journal of Power Sources, 2011, 196: 10328-10335. |
35 | Zhang C, Jiang J, Gao Y, et al. Charging optimization in lithium-ion batteries based on temperature rise and charge time[J]. Applied Energy, 2017, 194: 569-577. |
36 | Dubarry M, Truchot C, Liaw B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications (Part II): Degradation mechanism under 2C cycle aging[J]. Journal of Power Sources, 2011, 196(23): 10336-10343. |
37 | 薛楠, 孙丙香, 白恺, 等. 基于容量增量分析的复合材料锂电池分区间循环衰退机理[J]. 电工技术学报, 2017, 32(13): 145-152. |
Xue N, Sun B X, Bai K, et al. Different state of charge range cycle degradation mechanism of composite material lithium-ion batteries based on incremental capacity analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 145-152. | |
38 | Bandhauer T M, Garimella S, Fuller T F. Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery[J]. Journal of Power Sources, 2014, 247: 618-628. |
39 | 梁金华, 李建秋, 卢兰光, 等. 纯电动车电池组散热必要性的初步分析[J]. 汽车工程, 2012, 34(7): 589-591. |
Liang J H, Li J Q, Lu L G, et al. A preliminary analysis on the necessity of battery pack cooling for pure electric vehicles[J]. Automotive Engineering, 2012, 34(7): 589-591. | |
40 | Waldmann T, Wilka M, Kasper M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries - a post-mortem study[J]. Journal of Power Sources, 2014, 262: 129-135. |
[1] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[2] | 陈永珍, 黎华玲, 宋文吉, 冯自平. 废旧磷酸铁锂材料的固相再生及电化学性能研究[J]. 化工学报, 2018, 69(12): 5316-5325. |
[3] | 于申军,周永超,李贺,陈志奎. 内阻差异对锂离子电池组安全性能的影响 [J]. CIESC Journal, 2010, 61(11): 2960-2964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||