化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1288-1296.DOI: 10.11949/0438-1157.20190948
收稿日期:
2019-08-20
修回日期:
2019-11-05
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
李保红
作者简介:
李保红(1973—),男,博士,教授,基金资助:
Received:
2019-08-20
Revised:
2019-11-05
Online:
2020-03-05
Published:
2020-03-05
Contact:
Baohong LI
摘要:
目前大部分图形工具仅适用于以节能为目标的换热网络(HEN)设计或者改造。能量回收量的增加往往伴随换热单元数的增多,而换热单元数对设备投资费有较大影响。采用换热器负荷图(HELD)提出一种系统化的换热网络改造新方法。新方法基于夹点分析,在改造区间中选择匹配目标,重新构建改造用HELD,从而简化问题;通过在水平方向上平移热流股曲线实现跨夹点负荷的重新分配,完成节能目标,并结合经验规则,尽可能减少改造后换热网络的换热器数目。以一个工业造纸厂为例,对其进行节能改造方案设计,相较于文献报道结果,得到两个节能目标值相近且换热器改动数目更少的新方案,验证了新方法的有效性。
中图分类号:
李保红, 李继文. 采用换热器负荷图指导换热网络改造的新方法[J]. 化工学报, 2020, 71(3): 1288-1296.
Baohong LI, Jiwen LI. New method for heat exchanger network retrofit using heat exchanger load diagram[J]. CIESC Journal, 2020, 71(3): 1288-1296.
流股名称 | 实际温度/℃ | 热负荷 Q/kW | 热容流率 FCp/(kW/℃) | 虚拟温度/℃ | ||
---|---|---|---|---|---|---|
Ts | Tt | Ts* | Tt* | |||
WW高温段 | 58 | 39.9 | 7951 | 439.3 | 53 | 34.9 |
WW低温段 | 39.9 | 30 | 1283 | 129.6 | 34.9 | 25 |
RC | 60 | 30 | 2254 | 75.1 | 55 | 25 |
EX1① | 80 | 40 | 10216 | 255.4 | 70 | 30 |
EX2① | 80 | 40 | 10216 | 255.4 | 70 | 30 |
PS | 70 | 20 | 7523 | 150.5 | 65 | 15 |
BW | 11 | 61 | 10745 | 214.9 | 16 | 66 |
HW | 50 | 61 | 2032 | 184.7 | 55 | 66 |
OI | 30 | 50 | 727 | 36.4 | 35 | 55 |
BB | 20 | 80 | 3763 | 62.7 | 30 | 90 |
PV | 20 | 125 | 4946 | 47.1 | 30 | 135 |
RP | 11 | 60 | 6306 | 128.7 | 16 | 65 |
表1 造纸厂的流股数据
Table 1 Stream data of the paper mill
流股名称 | 实际温度/℃ | 热负荷 Q/kW | 热容流率 FCp/(kW/℃) | 虚拟温度/℃ | ||
---|---|---|---|---|---|---|
Ts | Tt | Ts* | Tt* | |||
WW高温段 | 58 | 39.9 | 7951 | 439.3 | 53 | 34.9 |
WW低温段 | 39.9 | 30 | 1283 | 129.6 | 34.9 | 25 |
RC | 60 | 30 | 2254 | 75.1 | 55 | 25 |
EX1① | 80 | 40 | 10216 | 255.4 | 70 | 30 |
EX2① | 80 | 40 | 10216 | 255.4 | 70 | 30 |
PS | 70 | 20 | 7523 | 150.5 | 65 | 15 |
BW | 11 | 61 | 10745 | 214.9 | 16 | 66 |
HW | 50 | 61 | 2032 | 184.7 | 55 | 66 |
OI | 30 | 50 | 727 | 36.4 | 35 | 55 |
BB | 20 | 80 | 3763 | 62.7 | 30 | 90 |
PV | 20 | 125 | 4946 | 47.1 | 30 | 135 |
RP | 11 | 60 | 6306 | 128.7 | 16 | 65 |
换热器编号 | 换热面积变化率/% | ||
---|---|---|---|
方案1 | 方案2 | 方案3 | |
C3 | -22.3 | -22.3 | -17.9 |
C4 | -2.6 | -12.4 | -8.8 |
E1 | 12.5 | 12.5 | 0 |
E2 | 82.9 | 17.0 | 0 |
H1 | — | -62.9 | -73.0 |
H2 | 0 | — | -45.7 |
表2 不同方案换热器的换热面积变化率
Table 2 Variation rate of heat transfer area of heat exchangers under different retrofit scenarios
换热器编号 | 换热面积变化率/% | ||
---|---|---|---|
方案1 | 方案2 | 方案3 | |
C3 | -22.3 | -22.3 | -17.9 |
C4 | -2.6 | -12.4 | -8.8 |
E1 | 12.5 | 12.5 | 0 |
E2 | 82.9 | 17.0 | 0 |
H1 | — | -62.9 | -73.0 |
H2 | 0 | — | -45.7 |
方案编号 | 新增换热器/个 | 利用的旧换热器/个 | 改造换热器/个 | 换热器总数/个 |
---|---|---|---|---|
1 | 1 | 3 | 1 | 14 |
2 | 2 | 4 | 1 | 15 |
3 | 2 | 2 | 2 | 16 |
表3 不同方案的换热器变更情况
Table 3 Changes of heat exchangers under different retrofit scenarios
方案编号 | 新增换热器/个 | 利用的旧换热器/个 | 改造换热器/个 | 换热器总数/个 |
---|---|---|---|---|
1 | 1 | 3 | 1 | 14 |
2 | 2 | 4 | 1 | 15 |
3 | 2 | 2 | 2 | 16 |
1 | 王文堂.化工技术节能手册[M].北京:化学工业出版社,2011. |
Wang W T.Manual of Energy Conservation in Chemical Technology[M].Beijing:Chemical Industry Press,2011. | |
2 | Law R,Harvey A,Reay D.Opportunities for low-grade heat recovery in the UK food processing industry[J].Applied Thermal Engineering,2013,53:188-196. |
3 | 刘新文,罗行,马虎根.换热网络改造可行性研究[J].节能,2013,32(3):12-15. |
Liu X W,Luo X,Ma H G.Studies on the retrofit feasibility of heat exchanger networks[J].Energy Conservation,2013,32(3):12-15. | |
4 | Briones V,Kokossis A.A new approach for the optimal retrofit of heat exchanger networks[J].Computers & Chemical Engineering,1996,20(96):S43-S48. |
5 | Smith R.Recent developments in process integration design techniques[C]//International Process Integration Jubilee Conference.Sweden,2013. |
6 | 王彧斐,冯霄.换热网络集成与优化研究进展[J].化学反应工程与工艺,2014,30(3):271-280. |
Wang Y W,Feng X.Advances in heat exchange network integration and optimization[J].Chemical Reaction Engineering and Process,2014,30(3):271-280. | |
7 | 刘新文,罗行,马虎根.两种换热网络综合优化方法对比研究[J].上海理工大学学报,2015,37(3):238-244. |
Liu X W,Luo X,Ma H G.A comparative study of two comprehensive optimization methods for heat exchanger networks[J].Journal of Shanghai University of Technology,2015,37(3):238-244. | |
8 | 霍兆义,赵亮,尹洪超.基于分级超结构的换热网络改造优化[J].热科学与技术,2016,15(1):19-25. |
Huo Z Y,Zhao L,Yin H C.Renovation and optimization of heat exchanger networks based on hierarchical superstructure[J].Thermal Science and Technology,2016,15(1):19-25. | |
9 | 蒋宁,韩文巧,郭风元,等.基于实际热负荷分布的换热网络优化改造[J].化工进展,2018,37(8):2935-2941. |
Jiang N,Han W Q,Guo F Y,et al.Heat exchange network improvement based on actual heat load distribution[J].Chemical Industry and Engineering Progress,2018,37(8):2935-2941. | |
10 | 蒋宁,谢小东,范伟,等.数据驱动的固定拓扑结构换热网络优化改造方法[J].化工进展,2019,38(10):4452-4460. |
Jiang N,Xie X D,Fan W,et al.Data-driven fixed-topology heat exchanger network optimization method[J].Chemical Industry and Engineering Progress,2019,38(10):4452-4460. | |
11 | Čuček L,Boldyryev S,Klemeš J J,et al.Approaches for retrofitting heat exchanger networks within processes and Total Sites[J].Journal of Cleaner Production,2019,211:884-894. |
12 | Akpomiemie M O,Smith R.Retrofit of heat exchanger networks with heat transfer enhancement based on an area ratio approach[J].Appl. Energy,2016,165:22-35. |
13 | Wan Alwi S R,Manan Z A.STEP-A new graphical tool for simultaneous targeting and design of a heat exchanger network[J].Chemical Engineering Journal,2010,162:106-121. |
14 | Lai Y Q,Manan Z A,Wan Alwi S R.Simultaneous diagnosis and retrofit of heat exchanger network via individual process stream mapping[J].Energy,2018,155:1113-1128. |
15 | Li B H,Chang C T.Retrofitting industrial heat exchanger network based on pinch analysis[J].Industrial & Engineering Chemistry Research,2010,49(8):3967-3971. |
16 | Yong J Y,Varbanov P S,Klemes J J.Heat exchanger network retrofit supported by extended grid diagram and heat path development[J].Applied Thermal Engineering,2015,89:1033-1045. |
17 | Gadalla M A.A new graphical method for pinch analysis applications: heat exchanger network retrofit and energy integration[J].Energy,2015,81:159-174. |
18 | Bonhivers J C,Alva-Argaez A,Srinivasan B,et al.New analysis method to reduce the industrial energy requirements by heat-exchanger network retrofit(Part 2): Stepwise and graphical approach[J].Applied Thermal Engineering,2017b,119:670-686. |
19 | 冯霄,王彧斐.化工节能原理与技术[M]. 第4版. 北京: 化学工业出版社,2015. |
Feng X,Wang Y F.Principles and Technologies of Chemical Energy Conservation[M].4th ed.Beijing:Chemical Industry Press,2015. | |
20 | Kemp I C.Pinch analysis and process integration-a user guide on process integration for the efficient use of energy[J].Journal of Cleaner Production,2016,110:203 |
21 | Li B H,Chota Castillo Y E,Chang C T.An improved design method for retrofitting industrial heat exchanger networks based on pinch analysis[J].Chemical Engineering Research and Design,2019,148:260-270. |
22 | 王春花,华贲.换热网络优化设计方法及多换热网络能量集成的研究进展[J].石油化工设备,2009,38(5):50-57. |
Wang C H,Hua B.Research progress in optimization design methods of heat exchanger networks and energy integration of multi-heat exchanger networks[J].Petrochemical Equipment,2009,38(5):50-57. | |
23 | Linnhoff B,Hindmarsh E.The pinch design method for heat exchanger networks[J].Chem. Eng. Sci.,1983,38(5):745-763. |
24 | Sama D A,Qian S,Gaggioli R.A common-sense second law approach for improving process efficiencies[C]//Proceedings of the International Symposium on Thermodynamics Analysis and Improvement of Energy Systems.Beijing,1989:520-531. |
25 | Lal N S,Walmsley T G,Walmsley M R W,et al.A novel heat exchanger network bridge retrofit method using the modified energy transfer diagram[J].Energy,2018,155:190-204. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[4] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[7] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[8] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[12] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[13] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[14] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[15] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||