化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3533-3542.DOI: 10.11949/0438-1157.20230485
收稿日期:
2023-05-16
修回日期:
2023-07-30
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
卫东
作者简介:
陈国泽(1998—),男,硕士研究生,625279783@qq.com
基金资助:
Guoze CHEN1(), Dong WEI2(), Qian GUO1, Zhiping XIANG1
Received:
2023-05-16
Revised:
2023-07-30
Online:
2023-08-25
Published:
2023-10-18
Contact:
Dong WEI
摘要:
基于铝空气电池堆二阶等效电路,建立内阻特性和电气输出特性模型,研究操作条件对活化内阻、欧姆内阻、浓差内阻和电堆总内阻的影响作用和变化规律;以电堆输出满足任意负载需求为前提,以总内阻最小为优化目标,基于“最优功率点”概念,提出一种基于粒子群算法的操作条件优化方法,获得最优工作温度、电解液浓度和输出电压等,实现电堆输出性能优化;通过仿真研究和实验研究,验证模型、方法的有效性和可靠性。研究结果表明:在负载跟踪状态下,电堆工作在最优功率点处其堆内总内阻最小;操作条件对电堆输出性能的影响作用和变化规律,在交流阻抗特性和U-I输出特性中的表现具有一致性;该优化方法能够提高电堆输出性能,减少堆内能量损耗。
中图分类号:
陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542.
Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition[J]. CIESC Journal, 2023, 74(8): 3533-3542.
参数 | 数值 | 参数 | 数值 | 参数 | 数值 |
---|---|---|---|---|---|
T | 293~343 K | δ | 100 μm | n | 4 |
c | 3~8 mol·L-1 | S | 210 cm2 | p | 0.21 atm |
U | 17.6~37.4 V | N | 22 | a | 0.8 |
i | 0~0.3 A·cm-2 | L | 1 cm | Relect | 0.6 Ω·cm2 |
Pload | 200~1000 W | α | 0.15 | Eocv | 39.8~40.7 V |
表1 模型仿真参数
Table 1 Model simulation parameters
参数 | 数值 | 参数 | 数值 | 参数 | 数值 |
---|---|---|---|---|---|
T | 293~343 K | δ | 100 μm | n | 4 |
c | 3~8 mol·L-1 | S | 210 cm2 | p | 0.21 atm |
U | 17.6~37.4 V | N | 22 | a | 0.8 |
i | 0~0.3 A·cm-2 | L | 1 cm | Relect | 0.6 Ω·cm2 |
Pload | 200~1000 W | α | 0.15 | Eocv | 39.8~40.7 V |
P/W | i/(A·cm-2) | U/V | T/K | c/(mol·L-1) | Rf/(Ω·cm2) | Rm/(Ω·cm2) | Rd/(Ω·cm2) | Rcells/(Ω·cm2) |
---|---|---|---|---|---|---|---|---|
200~300 | 0.026~0.040 | 35.8~36.6 | 327~330 | 7.1~7.2 | 85.49~120.87 | 34.33~34.36 | 2.75~3.44 | 123.24~157.96 |
300~400 | 0.040~0.054 | 35.0~35.8 | 330~332 | 7.0~7.1 | 66.18~85.49 | 34.36~34.43 | 3.44~4.31 | 104.93~123.24 |
400~500 | 0.054~0.070 | 34.2~35.0 | 332~336 | 6.8~7.0 | 53.88~66.18 | 34.43~34.59 | 4.31~5.39 | 93.85~104.93 |
500~600 | 0.070~0.086 | 33.2~34.2 | 336~337 | 6.6~6.8 | 45.22~53.88 | 34.59~34.86 | 5.39~6.69 | 86.77~93.85 |
600~700 | 0.086~0.104 | 32.2~33.2 | 337~335 | 6.4~6.6 | 38.72~45.22 | 34.86~35.34 | 6.69~8.24 | 82.29~86.77 |
700~800 | 0.104~0.124 | 30.8~32.2 | 333~335 | 6.1~6.4 | 33.57~38.72 | 35.34~36.19 | 8.24~10.05 | 79.81~82.29 |
800~900 | 0.124~0.148 | 29.0~30.8 | 329~333 | 5.8~6.1 | 29.26~33.57 | 36.19~37.74 | 10.05~12.28 | 79.28~79.81 |
900~1000 | 0.148~0.199 | 23.9~29.0 | 322~329 | 5.3~5.8 | 23.79~29.26 | 37.74~42.47 | 12.28~17.98 | 79.28~84.24 |
表2 不同功率输出下最优操作条件和内阻变化范围
Table 2 Optimal operating conditions and internal resistance variation range at different power outputs
P/W | i/(A·cm-2) | U/V | T/K | c/(mol·L-1) | Rf/(Ω·cm2) | Rm/(Ω·cm2) | Rd/(Ω·cm2) | Rcells/(Ω·cm2) |
---|---|---|---|---|---|---|---|---|
200~300 | 0.026~0.040 | 35.8~36.6 | 327~330 | 7.1~7.2 | 85.49~120.87 | 34.33~34.36 | 2.75~3.44 | 123.24~157.96 |
300~400 | 0.040~0.054 | 35.0~35.8 | 330~332 | 7.0~7.1 | 66.18~85.49 | 34.36~34.43 | 3.44~4.31 | 104.93~123.24 |
400~500 | 0.054~0.070 | 34.2~35.0 | 332~336 | 6.8~7.0 | 53.88~66.18 | 34.43~34.59 | 4.31~5.39 | 93.85~104.93 |
500~600 | 0.070~0.086 | 33.2~34.2 | 336~337 | 6.6~6.8 | 45.22~53.88 | 34.59~34.86 | 5.39~6.69 | 86.77~93.85 |
600~700 | 0.086~0.104 | 32.2~33.2 | 337~335 | 6.4~6.6 | 38.72~45.22 | 34.86~35.34 | 6.69~8.24 | 82.29~86.77 |
700~800 | 0.104~0.124 | 30.8~32.2 | 333~335 | 6.1~6.4 | 33.57~38.72 | 35.34~36.19 | 8.24~10.05 | 79.81~82.29 |
800~900 | 0.124~0.148 | 29.0~30.8 | 329~333 | 5.8~6.1 | 29.26~33.57 | 36.19~37.74 | 10.05~12.28 | 79.28~79.81 |
900~1000 | 0.148~0.199 | 23.9~29.0 | 322~329 | 5.3~5.8 | 23.79~29.26 | 37.74~42.47 | 12.28~17.98 | 79.28~84.24 |
电堆参数 | 数值 | 电堆参数 | 数值 | 电堆参数 | 数值 | 电堆参数 | 数值 |
---|---|---|---|---|---|---|---|
额定功率 | 1 kW | 电压范围 | 17.6~37.4 V | 电池片数 | 22 | 铝合金 | Al-6061 |
额定电压 | 23.9 V | 电流范围 | 0~48 A | 总体积 | 40 cm×25 cm×20 cm | 电极间距 | 1 cm |
额定电流 | 41.8 A | 空气压力 | 0.1 MPa | 单片反应面积 | 14 cm×15 cm = 210 cm2 | 扩散层厚度 | 100 μm |
表3 电堆性能参数
Table 3 Performance parameters of the stack
电堆参数 | 数值 | 电堆参数 | 数值 | 电堆参数 | 数值 | 电堆参数 | 数值 |
---|---|---|---|---|---|---|---|
额定功率 | 1 kW | 电压范围 | 17.6~37.4 V | 电池片数 | 22 | 铝合金 | Al-6061 |
额定电压 | 23.9 V | 电流范围 | 0~48 A | 总体积 | 40 cm×25 cm×20 cm | 电极间距 | 1 cm |
额定电流 | 41.8 A | 空气压力 | 0.1 MPa | 单片反应面积 | 14 cm×15 cm = 210 cm2 | 扩散层厚度 | 100 μm |
1 | Buckingham R, Asset T, Atanassov P. Aluminum-air batteries: a review of alloys, electrolytes and design[J]. Journal of Power Sources, 2021, 498: 229762. |
2 | Lee W H, Choi S R, Kim J G. Effect of agar as electrolyte additive on the aluminum-air batteries[J]. Journal of the Electrochemical Society, 2020, 167(11): 110503. |
3 | Bing M C, Mo F, Hu Z F. Electrochemical performance of SiC composite anode in aluminum-air battery[J]. Electrochemistry, 2020, 88(6): 525-531. |
4 | Zhou C, Bhonge K, Cho K T. Analysis of the effect of hydrogen-evolving side reaction in the aqueous aluminum-air battery[J]. Electrochimica Acta, 2020, 330: 135290. |
5 | Xie J D, He P, Zhao R J, et al. Numerical modeling and analysis of the performance of an aluminum-air battery with alkaline electrolyte[J]. Processes, 2020, 8(6): 658. |
6 | Yang S H, Knickle H. Modeling the performance of an aluminum-air cell[J]. Journal of Power Sources, 2003, 124(2): 572-585. |
7 | Zhao R J, Xie J D, Wen H J, et al. Performance modeling and parameter sensitivity analyses of an aluminum-air battery with dual electrolyte structure[J]. Journal of Energy Storage, 2020, 32: 101696. |
8 | Sikovsky D P, Kharlamov S M, Palymsky V I, et al. Heat transfer and thermohydrodynamic fluctuations in aluminum-air fuel cell[J]. Journal of Engineering Thermophysics, 2015, 24(4): 386-397. |
9 | Wen H J, Liu Z S, Qiao J A, et al. High energy efficiency and high power density aluminum-air flow battery[J]. International Journal of Energy Research, 2020, 44(9): 7568-7579. |
10 | Hu T E, Fang Y D, Su L, et al. A novel experimental study on discharge characteristics of an aluminum-air battery[J]. International Journal of Energy Research, 2019, 43(5): 1839-1847. |
11 | Hu T E, Li K, Fang Y D, et al. Experimental research on temperature rise and electric characteristics of aluminum air battery under open-circuit condition for new energy vehicle[J]. International Journal of Energy Research, 2019, 43(3): 1099-1110. |
12 | 柯浪, 胡广来, 冯育俊, 等. 铝空气电池系统设计及放电特性研究[J]. 电源技术, 2019, 43(2): 263-265, 275. |
Ke L, Hu G L, Feng Y J, et al. Research on design and discharge characteristics of aluminum air battery system[J].Chinese Journal of Power Sources, 2019, 43(2): 263-265, 275. | |
13 | Lv C N, Zhang Y X, Ma J J, et al. Regulating solvation and interface chemistry to inhibit corrosion of the aluminum anode in aluminum-air batteries[J]. Journal of Materials Chemistry A, 2022, 10(17): 9506-9514. |
14 | 张清扬. 铝空气电池电解液循环及热管理系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
Zhang Q Y. Study on electrolyte circulation and thermal management system of aluminum-air battery[D]. Harbin: Harbin Institute of Technology, 2020. | |
15 | 费亚龙, 冯伟, 潘协辉. 一种铝空气电池双路冗余并联式管理系统研究[J]. 电源技术, 2021, 45(10): 1313-1315. |
Fei Y L, Feng W, Pan X H. Research of dual-circuit redundant parallel management system for aluminum-air batteries[J].Chinese Journal of Power Sources, 2021, 45(10): 1313-1315. | |
16 | 凤林, 岳应娟, 蔡艳平, 等. 基于改进型复合算法的铝空气燃料电池MPPT研究[J]. 兵器装备工程学报, 2022, 43(10): 317-324. |
Feng L, Yue Y J, Cai Y P, et al. Research on MPPT of aluminum-air fuel cell based on improved compound algorithm[J]. Journal of Ordnance Equipment Engineering, 2022, 43(10): 317-324. | |
17 | 王茹, 沈永超, 卫东, 等. 基于直流内阻和交流阻抗特性的PEMFC水管理状态分析[J]. 化工学报, 2020, 71(7): 3247-3257. |
Wang R, Shen Y C, Wei D, et al. Analysis of PEMFC water management status based on DC internal resistance and AC impedance characteristics[J]. CIESC Journal, 2020, 71(7): 3247-3257. | |
18 | 高志, 卫东, 王振, 等. 基于频率正割角的PEMFC性能优化[J]. 太阳能学报, 2019, 40(8): 2376-2382. |
Gao Z, Wei D, Wang Z, et al. PEMFC performance optimization based on frequency of secant angle[J]. Acta Energiae Solaris Sinica, 2019, 40(8): 2376-2382. | |
19 | Zhou C, Liu Z Y, Sun Y N, et al. A novel maximum power point tracking technique with improved particle swarm optimization for proton exchange membrane fuel cell[J]. Journal of Physics: Conference Series, 2022, 2347(1): 012017. |
20 | Yao J, Wu Z, Wang H, et al. Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance[J]. Applied Energy, 2022, 324: 119667. |
21 | Zhu Y, Zou J X, Li S, et al. An adaptive sliding mode observer based near-optimal OER tracking control approach for PEMFC under dynamic operation condition[J]. International Journal of Hydrogen Energy, 2022, 47(2): 1157-1171. |
22 | Yu W T, Shang W X, Xiao X, et al. Elucidating the mechanism of discharge performance improvement in zinc-air flow batteries: a combination of experimental and modeling investigations[J]. Journal of Energy Storage, 2021, 40: 102779. |
23 | Shallal A H, Shakir I K. Effects of operating parameters on the performance of a zinc-air fuel cell[J]. Journal of Physics: Conference Series, 2021, 1973(1): 012122. |
24 | Zhang T Y, Yu M F, Li J, et al. Effect of porosity gradient on mass transfer and discharge of hybrid electrolyte lithium-air batteries[J]. Journal of Energy Storage, 2022, 46: 103808. |
25 | 梁旭鸣, 沈永超, 卫东, 等. 基于直流内阻和交流阻抗特性的铝空气电池输出特性分析[J]. 化工学报, 2021, 72(8): 4361-4370. |
Liang X M, Shen Y C, Wei D, et al. Analysis of output characteristics of aluminum-air battery based on DC internal resistance and AC impedance characteristics[J]. CIESC Journal, 2021, 72(8): 4361-4370. | |
26 | Habibi P, Rahbari A, Blazquez S, et al. A new force field for OH– for computing thermodynamic and transport properties of H2 and O2 in aqueous NaOH and KOH solutions[J]. The Journal of Physical Chemistry B, 2022, 126(45): 9376-9387. |
27 | 蔡艳平, 李艾华, 徐斌, 等. 铝-空气新能源电池技术及其放电特性[J]. 电源技术, 2015, 39(6): 1232-1234, 1241. |
Cai Y P, Li A H, Xu B, et al. Aluminum-air new energy battery and its discharge characteristics[J]. Chinese Journal of Power Sources, 2015, 39(6): 1232-1234, 1241. | |
28 | Ren J M, Fu C P, Dong Q, et al. Evaluation of impurities in aluminum anodes for Al-air batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2300-2308. |
29 | 克里斯·莫尼卡塔斯, 玛丽亚·斯卡拉斯-哈萨克斯, 突蒂·玛丽亚娜·里姆. 大中型储能电池的研究进展[M]. 北京: 机械工业出版社, 2018. |
Menictas C, Skyllas-Kazacos M, Lim T M. Advances in Batteries for Medium- and Large-scale Energy Storage[M]. Beijing: China Machine Press, 2018. | |
30 | Yan W Y, Zheng S L, Jin W, et al. The influence of KOH concentration, oxygen partial pressure and temperature on the oxygen reduction reaction at Pt electrodes[J]. Journal of Electroanalytical Chemistry, 2015, 741: 100-108. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 梁旭鸣, 沈永超, 卫东, 郭倩, 高志. 基于直流内阻和交流阻抗特性的铝空气电池输出特性分析[J]. 化工学报, 2021, 72(8): 4361-4370. |
[3] | 唐和礼, 张冰, 黄冬梅, 申渝, 高旭, 时文歆. XDLVO理论在膜污染解析中的应用研究[J]. 化工学报, 2021, 72(3): 1230-1241. |
[4] | 王茹, 沈永超, 卫东, 郭倩. 基于直流内阻和交流阻抗特性的PEMFC水管理状态分析[J]. 化工学报, 2020, 71(7): 3247-3257. |
[5] | 王振, 卫东, 叶洪吉. 基于频率正割角计算的燃料电池堆水热管理状态诊断方法[J]. 化工学报, 2018, 69(10): 4371-4377. |
[6] | 彭旭东, 江锦波, 白少先, 李纪云, 王玉明. 中低压干气密封螺旋槽结构参数优化[J]. 化工学报, 2014, 65(11): 4536-4542. |
[7] | 姬玉欣,诸美红,陈 辉,倪伟敏,金仁村. 高负荷厌氧氨氧化反应器的研究进展[J]. 化工进展, 2013, 32(08): 1914-1920. |
[8] | 尤东光1,2,雍玉梅2,杨超2,张伟鹏2,梁杰1. 流量变化对液固流化床瞬态流化特性的影响[J]. 化工学报, 2012, 63(8): 2356-2364. |
[9] | 朱有健, 王定标, 周俊杰. 固定床煤气化炉的模拟与优化[J]. 化工学报, 2011, 62(6): 1606-1611. |
[10] | 祁荣宾, 钱锋. 基于多目标进化算法的对二甲苯氧化反应过程优化操作 [J]. 化工学报, 2010, 61(12): 3155-3161. |
[11] | 赵东胜,刘桂敏,赵艳丽,吴兆亮 . 气升式反应器研究进展 [J]. CIESC Journal, 2007, 26(6): 810-. |
[12] | 王靖岱;濮亚俊;阳永荣 . 振荡操作制备双峰聚乙烯的模拟 [J]. CIESC Journal, 2006, 57(7): 1682-1688. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||