化工学报 ›› 2020, Vol. 71 ›› Issue (5): 2004-2016.DOI: 10.11949/0438-1157.20200021
收稿日期:
2020-01-06
修回日期:
2020-02-27
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
许传龙
作者简介:
孙先亮(1995—),男,硕士研究生,基金资助:
Xianliang SUN1(),Jian LI1,2,Zhezhe HAN1,Chuanlong XU1()
Received:
2020-01-06
Revised:
2020-02-27
Online:
2020-05-05
Published:
2020-05-05
Contact:
Chuanlong XU
摘要:
针对电容层析成像技术的图像重建问题,提出了基于数据驱动的卷积神经网络图像重建方法。根据气固两相流的流型特点,通过数值模拟的方法随机生成了60000组介质分布图像,并利用有限元法计算了与之对应的电容向量,从而建立了一个“电容向量-介质分布”数据集;然后根据电容层析成像图像重建特点建立了卷积神经网络模型,对数据集中的训练集进行学习和训练,并利用测试集对训练结果进行了验证与评价。在此基础上,对获得的ECT图像重建卷积神经网络模型进行了静态实验和流化床测试实验研究。模拟和实验结果表明:所建立的卷积神经网络能较好地实现ECT图像重建,可直接用于流化床内的颗粒浓度分布测量。
中图分类号:
孙先亮, 李健, 韩哲哲, 许传龙. 基于数据驱动的卷积神经网络电容层析成像图像重建[J]. 化工学报, 2020, 71(5): 2004-2016.
Xianliang SUN, Jian LI, Zhezhe HAN, Chuanlong XU. Data-driven image reconstruction of electrical capacitance tomography based on convolutional neural network[J]. CIESC Journal, 2020, 71(5): 2004-2016.
流型 | 指标 | LBP | Landweber | CNN |
---|---|---|---|---|
分层流 | 相对图像误差 | 11.22% | 13.01% | 1.43% |
相关系数 | 0.9183 | 0.8972 | 0.9886 | |
相含量误差 | -3.91% | -3.77% | 0.21% | |
环状流 | 相对图像误差 | 11.34% | 1.94% | 0.49% |
相关系数 | 0.8596 | 0.9735 | 0.9932 | |
相含量误差 | -3.41% | -1.58% | 0.23% | |
核心流 | 相对图像误差 | 37.76% | 25.94% | 1.58% |
相关系数 | 0.8616 | 0.8801 | 0.9877 | |
相含量误差 | 13.89% | -14.71% | -0.72% | |
双核流 | 相对图像误差 | 35.36% | 41.33% | 3.56% |
相关系数 | 0.7490 | 0.6824 | 0.9736 | |
相含量误差 | -7.39% | -8.61% | 0.80% |
表1 典型流型的评价指标
Table 1 Evaluation indexes for typical flow patterns
流型 | 指标 | LBP | Landweber | CNN |
---|---|---|---|---|
分层流 | 相对图像误差 | 11.22% | 13.01% | 1.43% |
相关系数 | 0.9183 | 0.8972 | 0.9886 | |
相含量误差 | -3.91% | -3.77% | 0.21% | |
环状流 | 相对图像误差 | 11.34% | 1.94% | 0.49% |
相关系数 | 0.8596 | 0.9735 | 0.9932 | |
相含量误差 | -3.41% | -1.58% | 0.23% | |
核心流 | 相对图像误差 | 37.76% | 25.94% | 1.58% |
相关系数 | 0.8616 | 0.8801 | 0.9877 | |
相含量误差 | 13.89% | -14.71% | -0.72% | |
双核流 | 相对图像误差 | 35.36% | 41.33% | 3.56% |
相关系数 | 0.7490 | 0.6824 | 0.9736 | |
相含量误差 | -7.39% | -8.61% | 0.80% |
流型 | 指标 | LBP | Landweber | CNN |
---|---|---|---|---|
1a | 相对图像误差 | 1.25% | 0.66% | 0.32% |
相关系数 | 0.8340 | 0.9173 | 0.9680 | |
相含量误差 | 0.11% | 0.51% | -0.09% | |
1b | 相对图像误差 | 19.34% | 16.76% | 1.40% |
相关系数 | 0.8201 | 0.8833 | 0.9767 | |
相含量误差 | 0.37% | 0.04% | -1.39% | |
2a | 相对图像误差 | 5.11% | 5.62% | 0.96% |
相关系数 | 0.8761 | 0.8776 | 0.9777 | |
相含量误差 | 0.30% | 0.30% | -0.24% | |
2b | 相对图像误差 | 4.58% | 7.85% | 0.99% |
相关系数 | 0.8918 | 0.8689 | 0.9781 | |
相含量误差 | -0.39% | -0.20% | -1.10% |
表2 随机流型的评价指标
Table 2 Evaluation indexes for random flow patterns
流型 | 指标 | LBP | Landweber | CNN |
---|---|---|---|---|
1a | 相对图像误差 | 1.25% | 0.66% | 0.32% |
相关系数 | 0.8340 | 0.9173 | 0.9680 | |
相含量误差 | 0.11% | 0.51% | -0.09% | |
1b | 相对图像误差 | 19.34% | 16.76% | 1.40% |
相关系数 | 0.8201 | 0.8833 | 0.9767 | |
相含量误差 | 0.37% | 0.04% | -1.39% | |
2a | 相对图像误差 | 5.11% | 5.62% | 0.96% |
相关系数 | 0.8761 | 0.8776 | 0.9777 | |
相含量误差 | 0.30% | 0.30% | -0.24% | |
2b | 相对图像误差 | 4.58% | 7.85% | 0.99% |
相关系数 | 0.8918 | 0.8689 | 0.9781 | |
相含量误差 | -0.39% | -0.20% | -1.10% |
重建方法 | 耗时/μs |
---|---|
LBP | 117.2 |
Landweber | 15806.1 |
CNN逐帧 | 10122.3 |
CNN批量 | 114.5 |
表3 图像重建时间
Table 3 Time consumption of image reconstruction
重建方法 | 耗时/μs |
---|---|
LBP | 117.2 |
Landweber | 15806.1 |
CNN逐帧 | 10122.3 |
CNN批量 | 114.5 |
流型 | 相对图像误差/% | ||||
---|---|---|---|---|---|
10 dB | 20 dB | 30 dB | 40 dB | 无噪声 | |
1a | 5.15 | 2.23 | 0.49 | 0.37 | 0.32 |
1b | 61.93 | 12.33 | 1.75 | 1.56 | 1.40 |
2a | 36.27 | 3.99 | 1.95 | 1.05 | 0.96 |
2b | 37.59 | 7.19 | 1.65 | 1.24 | 0.99 |
表4 CNN算法在不同信噪比下的相对图像误差
Table 4 Relative image error of CNN at different SNR
流型 | 相对图像误差/% | ||||
---|---|---|---|---|---|
10 dB | 20 dB | 30 dB | 40 dB | 无噪声 | |
1a | 5.15 | 2.23 | 0.49 | 0.37 | 0.32 |
1b | 61.93 | 12.33 | 1.75 | 1.56 | 1.40 |
2a | 36.27 | 3.99 | 1.95 | 1.05 | 0.96 |
2b | 37.59 | 7.19 | 1.65 | 1.24 | 0.99 |
算法 | 相对图像误差/% | ||||
---|---|---|---|---|---|
10 dB | 20 dB | 30 dB | 40 dB | 无噪声 | |
LBP | 7.22 | 5.07 | 5.20 | 5.04 | 5.11 |
Landweber | 53.97 | 9.50 | 6.02 | 5.62 | 5.62 |
CNN | 36.27 | 3.99 | 1.95 | 1.05 | 0.96 |
表5 三种算法在不同信噪比下的相对图像误差
Table 5 Relative image error of methods at different SNR
算法 | 相对图像误差/% | ||||
---|---|---|---|---|---|
10 dB | 20 dB | 30 dB | 40 dB | 无噪声 | |
LBP | 7.22 | 5.07 | 5.20 | 5.04 | 5.11 |
Landweber | 53.97 | 9.50 | 6.02 | 5.62 | 5.62 |
CNN | 36.27 | 3.99 | 1.95 | 1.05 | 0.96 |
1 | 赵玉磊, 郭宝龙, 闫允一. 电容层析成像技术的研究进展与分析[J]. 仪器仪表学报, 2012, 33(8): 1909-1920. |
Zhao Y L, Guo B L, Yan Y Y. Latest development and analysis of electrical capacitance tomography technology[J]. Chinese Journal of Scientific Instrument, 2012, 33(8): 1909-1920. | |
2 | 穆忠波, 康宁民, 侯成林, 等. 电容层析成像技术在气固两相流检测中的应用[J]. 仪表技术与传感器, 2009, (5): 136-138. |
Mu Z B, Kang N M, Hou C L, et al. Application of electrical capacitance tomography in super phase pulverized-coal transportation[J]. Instrument Technique and Sensor, 2009, (5): 136-138. | |
3 | Warsito W, Fan L S. ECT imaging of three-phase fluidized bed based on three-phase capacitance model[J]. Chemical Engineering Science, 2003, 58(3/4/5/6): 823-832. |
4 | Liu S, Chen Q, Wang H G, et al. Electrical capacitance tomography for gas-solids flow measurement for circulating fluidized beds[J]. Flow Measurement and Instrumentation, 2005, 16(2/3): 135-144. |
5 | 杨道业, 周宾, 许传龙, 等.电容层析成像在高压浓相煤粉气力输送中的应用[J]. 仪器仪表学报, 2007, (11):1987-1993. |
Yang D Y, Zhou B, Xu C L, et al. Application of electrical tomography in dense-phase pneumatic of pulverized coal under high pressure[J]. Chinese Journal of Science Instrument, 2007, (11):1987-1993. | |
6 | Yang W Q, Peng L. Image reconstruction algorithms for electrical capacitance tomography[J]. Measurement Science and Technology, 2002, 14(1): R1. |
7 | Gamio J C, Ortiz-Aleman C, Martin R. Electrical capacitance tomography two-phase oil-gas pipe flow imaging by the linear back-projection algorithm[J]. Geofísica Internacional, 2005, 44(3): 265-273. |
8 | Yan H, Liu C, Gao J. Electrical capacitance tomography image reconstruction based on singular value decomposition[C]// Fifth World Congress on Intelligent Control and Automation. IEEE, 2004: 3783-376a. |
9 | Jing L, Liu S, Li Z H, et al. An image reconstruction algorithm based on the extended Tikhonov regularization method for electrical capacitance tomography[J]. Measurement, 2009, 42(3): 368-376. |
10 | Yang W Q, Spink D M, York T A, et al. An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography[J]. Measurement Science and Technology, 1999, 10(11): 1065. |
11 | 陈德运, 陈宇, 王莉莉, 等. 基于改进Gauss-Newton的电容层析成像图像重建算法[J]. 电子学报, 2009, 37(4): 739-743. |
Chen D Y, Chen Y, Wang L L, et al. A novel Gauss-Newton image reconstruction algorithm for electrical capacitance tomography system[J]. Acta Electronica Sinica, 2009, 37(4): 739-743. | |
12 | 马敏, 张彩霞, 姬晶晶, 等. 改进的共轭梯度算法的图像重建算法[J]. 计量学报, 2013, 34(1): 27-30. |
Ma M, Zhang C X, Ji J J, et al. An improved conjugate gradient algorithm for image reconstruction algorithm[J]. Acta Metrologica Sinica, 2013, 34(1): 27-30. | |
13 | 胡晟. 电容层析成像系统正问题及图像重建方法的研究[D]. 沈阳: 辽宁大学, 2011. |
Hu S. Research on electrical capacitance tomography system to forward problem and image reconstruction methods[D]. Shenyang:Liaoning University, 2011. | |
14 | Wang P, Lin J S, Wang M. An image reconstruction algorithm for electrical capacitance tomography based on simulated annealing particle swarm optimization[J]. Journal of Applied Research and Technology, 2015, 13(2): 197-204. |
15 | Mou C H, Peng L H, Yao D Y, et al. Image reconstruction using a genetic algorithm for electrical capacitance tomography[J]. Tsinghua Science and Technology, 2005, 10(5): 587-592. |
16 | Marashdeh Q, Warsito W, Fan L S, et al. Nonlinear forward problem solution for electrical capacitance tomography using feed-forward neural network[J]. IEEE Sensors Journal, 2006, 6(2): 441-449. |
17 | Zheng J, Peng L. An autoencoder-based image reconstruction for electrical capacitance tomography[J]. IEEE Sensors Journal, 2018, 18(13): 5464-5474. |
18 | Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. |
19 | Vedaldi A, Lenc K. Matconvnet: convolutional neural networks for matlab[C]//Proceedings of the 23rd ACM International Conference on Multimedia. ACM, 2015: 689-692. |
20 | Zhao Z, Wu Y. Attention-based convolutional neural networks for sentence classification[C]// INTERSPEECH. 2016: 705-709. |
21 | Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. 2012: 1097-1105. |
22 | Jin K H, McCann M T, Froustey E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509-4522. |
23 | Tan C, Lv S, Dong F, et al. Image reconstruction based on convolutional neural network for electrical resistance tomography[J]. IEEE Sensors Journal, 2018, 19(1): 196-204. |
24 | Hamilton S J, Hauptmann A. Deep D-Bar: real-time electrical impedance tomography imaging with deep neural networks[J]. IEEE Transactions on Medical Imaging, 2018, 37(10): 2367-2377. |
25 | Flores N, Á Kuri-Morales, Gamio C. An application of neural networks for image reconstruction in electrical capacitance tomography applied to oil industry[C]//Iberoamerican Congress on Pattern Recognition. Heidelberg, Berlin: Springer, 2006: 371-380. |
26 | Zhang L F, Wang H X, Ma M, et al. Image reconstruction algorithm for electrical capacitance tomography based on radial basis function neural network[C]//2005 International Conference on Machine Learning and Cybernetics. IEEE, 2005, 7: 4149-4152. |
27 | Guo Q, Ye M, Yang W, et al. A machine learning approach for electrical capacitance tomography measurement of gas-solid fluidized beds[J]. AIChE Journal, 2019, 65(6):e16583. |
28 | 金建铭. 电磁场有限元方法[M]. 西安: 西安电子科技大学, 1998. |
Jin J M. Finite Element Method of Electromagnetic Field[M]. Xi an: Xidian Uinversity, 1998. | |
29 | Onsager L. Electric moments of molecules in liquids[J]. Journal of the American Chemical Society, 1936, 58(8): 1486-1493. |
30 | Zheng J, Li J, Li Y, et al. A benchmark dataset and deep learning-based image reconstruction for electrical capacitance tomography[J]. Sensors, 2018, 18(11): 3701. |
31 | Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |
[1] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[2] | 袁壮, 凌逸群, 杨哲, 李传坤. 基于TA-ConvBiLSTM的化工过程关键工艺参数预测[J]. 化工学报, 2022, 73(1): 342-351. |
[3] | 唐晓婕, 杨博, 李宏光. 复杂化工过程调控操纵策略的深度学习方法[J]. 化工学报, 2021, 72(9): 4830-4837. |
[4] | 陈昭, 陈猛, 王江江, 常家兴, 刘马林. 非规则结构电容层析成像填补法测量的敏感场特性及重构算法改进[J]. 化工学报, 2020, 71(8): 3469-3479. |
[5] | 张立峰1,王化祥2. 一种新的电容层析成像电极组合激励测量模式[J]. 化工学报, 2012, 63(3): 860-865. |
[6] | 付飞飞, 许传龙, 王式民. 密相气力输送中气固两相流动特性多源信息分析[J]. 化工学报, 2012, 63(10): 3070-3079. |
[7] | 李虎, 杨道业, 程明霄. 螺旋表面极板电容式传感器的灵敏场分析 [J]. 化工学报, 2011, 62(8): 2292-2297. |
[8] | 孔祥明, 程振民. 涓流床中液体分布形态与滞后特性[J]. 化工学报, 2011, 62(6): 1515-1523. |
[9] | 王琦, 王化祥. 基于小波多分辨分析和最小交叉熵的快速CT图像重建算法 [J]. 化工学报, 2011, 62(1): 59-65. |
[10] | 程振民, 孔祥明, 曹鑫, 兰江安, 黄子宾. 涓流床反应器中流区过渡的气相渗透率表征 [J]. 化工学报, 2010, 61(7): 1770-1776. |
[11] | 马胜, 郭晓镭, 龚欣, 黄万杰, 陆海峰, 刘剀. 粉煤密相气力输送流型 [J]. 化工学报, 2010, 61(6): 1415-1422. |
[12] | 周宾;郝英立;王式民. 基于光学分层层析成像原理的火焰测温法 [J]. CIESC Journal, 2010, 61(3): 612-622. |
[13] | 孙绍增, 王正阳, 杜明坤, 邓启刚, 吴少华. 回料流入口高度对循环流化床提升管流动特性的影响 [J]. 化工学报, 2010, 61(1): 60-65. |
[14] | 杨道业;周宾;王式民. 电容层析成像在高压浓相煤粉气力输送中的应用 [J]. CIESC Journal, 2009, 60(4): 892-897. |
[15] | 吴晓. 柱塞气固两相流输送特性 [J]. CIESC Journal, 2009, 60(3): 608-614. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||