化工学报 ›› 2020, Vol. 71 ›› Issue (11): 5237-5245.DOI: 10.11949/0438-1157.20200328
收稿日期:
2020-03-30
修回日期:
2020-06-10
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
李宏光
作者简介:
孙中建(1996—),男,硕士研究生,Zhongjian SUN(),Bo YANG,Chu QI,Hongguang LI()
Received:
2020-03-30
Revised:
2020-06-10
Online:
2020-11-05
Published:
2020-11-05
Contact:
Hongguang LI
摘要:
常规的数据驱动故障检测方法难以处理同时包含连续和离散变量的工业混杂系统,数据逻辑分析(logical analysis of data, LAD)方法通过对历史数据中变量组合的逻辑分析,能够有效地挖掘离散和连续变量数据中存在的隐含规则。然而,常规的LAD在提取连续变量特征时存在对趋势变化信息丢失的问题,并且在处理具有高维度、多变量特征的工业数据时会导致提取的规则存在大量冗余。为此,本文提出一种基于扩展数据逻辑分析(extended logical analysis of data, ELAD)的工业混杂系统故障检测方法,根据与关键变量的关联度选取相关变量,增加变量的趋势信息以进行过程状态变化的表征,生成可解释的故障检测模型。应用于工业煤气化汽包过程,有效地检测了关键混杂变量对汽包液位故障的影响,实验结果验证了所提方法的可行性和有效性。
中图分类号:
孙中建,杨博,齐楚,李宏光. 面向工业混杂系统故障检测的扩展数据逻辑分析方法[J]. 化工学报, 2020, 71(11): 5237-5245.
Zhongjian SUN,Bo YANG,Chu QI,Hongguang LI. An extended logical analysis of data approach to fault detections of industrial hybrid systems[J]. CIESC Journal, 2020, 71(11): 5237-5245.
Step | Algorithm |
---|---|
1 | Input: |
2 | for d=1,2,…,D |
3 | if d<D, Cd=0, end if |
4 | for T through Cd-1 |
5 | p= maximum index of T; |
6 | for s=p+1,p+2,…,n |
7 | for lnew through {ls, ls′} |
8 | T′=T||lnew |
9 | for i=1,2,…,d |
10 | |
11 | if |
12 | end for |
13 | if |
14 | if |
15 | P=P∪{T′}; |
16 | else if d<D |
17 | Cd=Cd∪{T′}; |
18 | end if |
19 | end if |
20 | end for |
21 | end for |
22 | end for |
23 | end for |
24 | Output: P |
表1 LAD算法描述
Table 1 Logical analysis of data algorithms
Step | Algorithm |
---|---|
1 | Input: |
2 | for d=1,2,…,D |
3 | if d<D, Cd=0, end if |
4 | for T through Cd-1 |
5 | p= maximum index of T; |
6 | for s=p+1,p+2,…,n |
7 | for lnew through {ls, ls′} |
8 | T′=T||lnew |
9 | for i=1,2,…,d |
10 | |
11 | if |
12 | end for |
13 | if |
14 | if |
15 | P=P∪{T′}; |
16 | else if d<D |
17 | Cd=Cd∪{T′}; |
18 | end if |
19 | end if |
20 | end for |
21 | end for |
22 | end for |
23 | end for |
24 | Output: P |
变量 | 描述 | 变量 | 描述 |
---|---|---|---|
F1 | 汽包补水流量 | F3 | 汽包排污流量 |
L1 | 汽包液位 | DV | 补水流量阀 |
P1 | 汽包压力 | T2 | 汽包出口蒸汽温度 |
T1 | 锅炉水补水温度 | T3 | 去汽化炉循环水温度 |
D1 | 汽包循环水密度 | F4 | 去汽化炉循环水流量 |
F2 | 汽包出口蒸汽流量 | F5 | 去汽化炉顶部盘管循环水流量 |
表2 相关变量及其描述
Table 2 Correlated variables and its description
变量 | 描述 | 变量 | 描述 |
---|---|---|---|
F1 | 汽包补水流量 | F3 | 汽包排污流量 |
L1 | 汽包液位 | DV | 补水流量阀 |
P1 | 汽包压力 | T2 | 汽包出口蒸汽温度 |
T1 | 锅炉水补水温度 | T3 | 去汽化炉循环水温度 |
D1 | 汽包循环水密度 | F4 | 去汽化炉循环水流量 |
F2 | 汽包出口蒸汽流量 | F5 | 去汽化炉顶部盘管循环水流量 |
补水流量F1 | 汽包液位L1 | 汽包压力P1 | … | 补水温度T1 | 循环水流量F4 | 补水流量阀DV | 状态 |
---|---|---|---|---|---|---|---|
9.80 | 71.09 | 4.19 | … | 176.82 | 20.19 | 1 | 正常 |
9.80 | 71.10 | 4.19 | … | 176.81 | 20.20 | 1 | 正常 |
9.78 | 71.16 | 4.19 | … | 176.80 | 20.20 | 1 | 故障 |
9.75 | 71.18 | 4.19 | … | 176.79 | 20.18 | 1 | 故障 |
… | … | … | … | … | … | … | … |
0 | 71.04 | 4.22 | … | 171.39 | 20.23 | 0 | 正常 |
0 | 71.04 | 4.22 | … | 171.39 | 20.21 | 0 | 正常 |
… | … | … | … | … | … | … | … |
8.62 | 62.94 | 4.17 | … | 178.29 | 20.12 | 1 | 故障 |
8.70 | 62.95 | 4.17 | … | 178.29 | 20.16 | 1 | 故障 |
表3 相关过程变量数据
Table 3 Correlated variable data
补水流量F1 | 汽包液位L1 | 汽包压力P1 | … | 补水温度T1 | 循环水流量F4 | 补水流量阀DV | 状态 |
---|---|---|---|---|---|---|---|
9.80 | 71.09 | 4.19 | … | 176.82 | 20.19 | 1 | 正常 |
9.80 | 71.10 | 4.19 | … | 176.81 | 20.20 | 1 | 正常 |
9.78 | 71.16 | 4.19 | … | 176.80 | 20.20 | 1 | 故障 |
9.75 | 71.18 | 4.19 | … | 176.79 | 20.18 | 1 | 故障 |
… | … | … | … | … | … | … | … |
0 | 71.04 | 4.22 | … | 171.39 | 20.23 | 0 | 正常 |
0 | 71.04 | 4.22 | … | 171.39 | 20.21 | 0 | 正常 |
… | … | … | … | … | … | … | … |
8.62 | 62.94 | 4.17 | … | 178.29 | 20.12 | 1 | 故障 |
8.70 | 62.95 | 4.17 | … | 178.29 | 20.16 | 1 | 故障 |
状态 | 训练集 | 测试集 | 总计 |
---|---|---|---|
正常 | 7633 | 1837 | 9470 |
故障 | 367 | 163 | 530 |
总计 | 8000 | 2000 | 10000 |
表4 训练集和测试集的数据总数
Table 4 Number of training and testing datasets
状态 | 训练集 | 测试集 | 总计 |
---|---|---|---|
正常 | 7633 | 1837 | 9470 |
故障 | 367 | 163 | 530 |
总计 | 8000 | 2000 | 10000 |
基本事件 | 基本事件含义 | 覆盖率 |
---|---|---|
P(1) | DV=1 | 1.000 |
P(2) | k=1 | 0.790 |
P(3) | L1>71.105 | 0.757 |
P(4) | L1′>0.039 | 0.995 |
P(5) | F1>3.423 | 0.847 |
P(6) | F1′≤0.027 | 0.251 |
P(7) | D1′≤0.0093 | 0.362 |
P(8) | F1>3.1788 | 0.981 |
P(9) | L1′>0.0987 | 0.460 |
P(10) | F1′>1.5455 | 0.038 |
P(11) | L1≤63.005 | 0.243 |
P(12) | L1′>0.0701 | 0.790 |
P(13) | T2′>81.987 | 0.240 |
P(14) | F4≤20.225 | 0.619 |
P(15) | F1>6.2149 | 0.594 |
P(16) | L1′>0.1093 | 0.305 |
P(17) | T2′>99.6787 | 0.046 |
表5 基本事件覆盖率
Table 5 Coverages of events
基本事件 | 基本事件含义 | 覆盖率 |
---|---|---|
P(1) | DV=1 | 1.000 |
P(2) | k=1 | 0.790 |
P(3) | L1>71.105 | 0.757 |
P(4) | L1′>0.039 | 0.995 |
P(5) | F1>3.423 | 0.847 |
P(6) | F1′≤0.027 | 0.251 |
P(7) | D1′≤0.0093 | 0.362 |
P(8) | F1>3.1788 | 0.981 |
P(9) | L1′>0.0987 | 0.460 |
P(10) | F1′>1.5455 | 0.038 |
P(11) | L1≤63.005 | 0.243 |
P(12) | L1′>0.0701 | 0.790 |
P(13) | T2′>81.987 | 0.240 |
P(14) | F4≤20.225 | 0.619 |
P(15) | F1>6.2149 | 0.594 |
P(16) | L1′>0.1093 | 0.305 |
P(17) | T2′>99.6787 | 0.046 |
规则 | 基本事件 | 基本事件含义 | 覆盖率 |
---|---|---|---|
R(1) | P(1)∩P(2)∩P(3)∩P(4) | DV=1, k=1, L1>71.105, L1′>0.039 | 0.752 |
R(2) | P(3)∩P(5)∩P(6)∩P(7) | L1>71.105, F1>3.423, F1′≤0.027, D1′≤0.0093 | 0.074 |
R(3) | P(1)∩P(2)∩P(3)∩P(8) | DV=1, k=1, L1>71.105, F1>3.1788 | 0.738 |
R(4) | P(1)∩P(2)∩P(9)∩P(10) | DV=1, k=1, L1′>0.0987, F1′>1.5455 | 0.019 |
R(5) | P(11)∩P(12) | L1≤63.005, L1′>0.0701 | 0.237 |
R(6) | P(13)∩P(14) | T2′>81.987, F4≤20.225 | 0.065 |
R(7) | P(11)∩P(15) | L1≤63.005, F1>6.2149 | 0.237 |
R(8) | P(11)∩0P(16)∩P(17) | L1≤63.005, L1′>0.1093, T2′>99.6787 | 0.022 |
表6 规则覆盖率
Table 6 Coverages of rules
规则 | 基本事件 | 基本事件含义 | 覆盖率 |
---|---|---|---|
R(1) | P(1)∩P(2)∩P(3)∩P(4) | DV=1, k=1, L1>71.105, L1′>0.039 | 0.752 |
R(2) | P(3)∩P(5)∩P(6)∩P(7) | L1>71.105, F1>3.423, F1′≤0.027, D1′≤0.0093 | 0.074 |
R(3) | P(1)∩P(2)∩P(3)∩P(8) | DV=1, k=1, L1>71.105, F1>3.1788 | 0.738 |
R(4) | P(1)∩P(2)∩P(9)∩P(10) | DV=1, k=1, L1′>0.0987, F1′>1.5455 | 0.019 |
R(5) | P(11)∩P(12) | L1≤63.005, L1′>0.0701 | 0.237 |
R(6) | P(13)∩P(14) | T2′>81.987, F4≤20.225 | 0.065 |
R(7) | P(11)∩P(15) | L1≤63.005, F1>6.2149 | 0.237 |
R(8) | P(11)∩0P(16)∩P(17) | L1≤63.005, L1′>0.1093, T2′>99.6787 | 0.022 |
规则 | 模式 | 故障 | ||
---|---|---|---|---|
R1 | 0.039 | M1 | 0.039 | P=0.053 |
R2 | 0.004 | |||
R3 | 0.037 | M2 | 0.039 | |
R4 | 0.002 | |||
R5 | 0.011 | M3 | 0.014 | |
R6 | 0.002 | |||
R7 | 0.014 | M4 | 0.014 | |
R8 | 0.001 |
表7 故障发生概率
Table 7 Fault Probabilities
规则 | 模式 | 故障 | ||
---|---|---|---|---|
R1 | 0.039 | M1 | 0.039 | P=0.053 |
R2 | 0.004 | |||
R3 | 0.037 | M2 | 0.039 | |
R4 | 0.002 | |||
R5 | 0.011 | M3 | 0.014 | |
R6 | 0.002 | |||
R7 | 0.014 | M4 | 0.014 | |
R8 | 0.001 |
检测模式 | 准确率/% |
---|---|
M1 | 99.9 |
M2 | 100 |
M3 | 99.4 |
M4 | 99.7 |
表8 模式准确率
Table 8 Accuracies of patterns
检测模式 | 准确率/% |
---|---|
M1 | 99.9 |
M2 | 100 |
M3 | 99.4 |
M4 | 99.7 |
方法 | 平均规则数目 | 准确率/% |
---|---|---|
LAD | 12 | 97.3 |
ELAD | 4 | 99.8 |
kNN | - | 86.8 |
SVM | - | 96.4 |
表9 与传统分类模型的性能比较
Table 9 Performance comparisons with traditional classifiers
方法 | 平均规则数目 | 准确率/% |
---|---|---|
LAD | 12 | 97.3 |
ELAD | 4 | 99.8 |
kNN | - | 86.8 |
SVM | - | 96.4 |
1 | Zhou G, Biswas G, Feng W. A comprehensive diagnosis of hybrid systems for discrete and parametric faults using hybrid I/O automata[J]. Ifac Papersonline, 2015, 48(21): 143-149. |
2 | Barton P I, Lee C K. Modeling, simulation, sensitivity analysis, and optimization of hybrid systems[J]. ACM Transactions on Modeling and Computer Simulation, 2002, 12(4): 256-289. |
3 | Maurya M R, Rengaswamy R, Venkatasubramanian V. A signed directed graph and qualitative trend analysis-based framework for incipient fault diagnosis[J]. Chemical Engineering Research & Design, 2007, 85(10): 1407-1422. |
4 | 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9, 16. |
Li H, Xiao D Y. Survey on data driven fault diagnosis methods[J]. Journal of Control and Decision, 2011, 26(1): 1-9, 16. | |
5 | Ming L, Zhao J. Review on chemical process fault detection and diagnosis[C]//6th International Symposium on Advanced Control of Industrial Processes, New Jersey: IEEE, 2017: 457-462. |
6 | Bezerra C G, Costa B S J, Guedes L A, et al. An evolving approach to unsupervised and Real-Time fault detection in industrial processes[J]. Expert Systems with Applications, 2016, 63: 134-144. |
7 | Sadeghi R, Hamidzadeh J. Automatic support vector data description[J]. Soft Computing, 2018, 22(1): 147-158. |
8 | Yu J, Yan X. Whole process monitoring based on unstable neuron output information in hidden layers of deep belief network[J]. IEEE Transactions on Cybernetics, 2019, PP(99): 1-10. |
9 | Heracleous C, Panayiotou C G, Polycarpou M M. Fault diagnosis of uncertain hybrid systems[J]. IFAC-PapersOnLine, 2018, 51(24): 123-130. |
10 | Lebbal M E H, Chafouk H, Hoblos G, et al. Faults detection and isolation for non linear hybrid systems[J]. IFAC Proceedings Volumes, 2006, 39(13): 986-991. |
11 | Krell M M, Straube S. Backtransformation: a new representation of data processing chains with a scalar decision function[J]. Advances in Data Analysis and Classification, 2017, 11(2): 415-439. |
12 | Ragab A, El-Koujok M, Amazouz M, et al. Fault detection and diagnosis in the Tennessee Eastman process using interpretable knowledge discovery[C]// 2017 Annual Reliability and Maintainability Symposium, New Jersey: IEEE, 2017: 1-7. |
13 | Lopez-Soto D, Yacout S, Angel-Bello F. Root cause analysis of familiarity biases in classification of inventory items based on logical patterns recognition[J]. Computers and Industrial Engineering, 2016, 93(C): 121-130. |
14 | Kogan A, Lejeune M A. Combinatorial methods for constructing credit risk ratings[M]// Lee C F, Lee J. Handbook of Financial Econometrics and Statistics. New York: Springer, 2015: 439-483. |
15 | Kronek L P, Reddy A A. Logical analysis of survival data: prognostic survival models by detecting high-degree interactions in right-censored data[J]. Bioinformatics, 2008, 24(16): i248-i253. |
16 | Mortada M A, Yacout S, Lakis A. Fault diagnosis in power transformers using multi-class logical analysis of data[J]. Journal of Intelligent Manufacturing, 2014, 25(6): 1429-1439. |
17 | Shaban Y, Yacout S, Balazinski M, et al. Cutting tool wear detection using multiclass logical analysis of data[J]. Machining Science and Technology, 2017, 21(4): 526-541. |
18 | Jocelyn S, Chinniah Y, Ouali M S, et al. Application of logical analysis of data to machinery-related accident prevention based on scarce data[J]. Reliability Engineering and System Safety, 2017, 159: 223-236. |
19 | Ragab A, El-Koujok M, Poulin B, et al. Fault diagnosis in industrial chemical processes using interpretable patterns based on Logical Analysis of Data[J]. Expert Systems with Applications, 2017, 95: 368-383. |
20 | Jie Y, Yan X. Mutual information-dynamic stacked sparse autoencoders for fault detection[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21614-21624. |
21 | Boros E, Crama Y, Hammer P L, et al. Logical analysis of data: classification with justification[J]. Annals of Operations Research, 2011, 188(1): 33-61. |
22 | Boros E, Hammer P L, Ibaraki T, et al. Logical analysis of numerical data[J]. Mathematical Programming, 1997, 79(1): 163-190. |
23 | Han J, Kim N, Yum B J, et al. Pattern selection approaches for the logical analysis of data considering the outliers and the coverage of a pattern[J]. Expert Systems with Applications, 2011, 38(11): 13857-13862. |
24 | Chikalov I, Lozin V, Lozina I, et al. Logical analysis of data: Theory, methodology and applications[M]//Three Approaches to Data Analysis. Springer Berlin Heidelberg, 2013: 147-192. |
25 | Crama Y, Hammer P L, Ibaraki T. Cause-effect relationships and partially defined Boolean functions[J]. Annals of Operations Research, 1988, 16(1): 299-325. |
26 | Crama Y, Hammer P L. Boolean Functions: Theory, Algorithms, and Applications[M].New York: Cambridge University Press, 2011: 511-526. |
27 | Boros E, Hammer P L, Ibaraki T, et al. An implementation of logical analysis of data[J]. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(2): 292-306. |
28 | Bonates T O, Hammer P L, Kogan A. Maximum patterns in datasets[J]. Discrete Applied Mathematics, 2008, 156(6): 846-861. |
29 | Velliangiri S, Alagumuthukrishnan S. A review of dimensionality reduction techniques for efficient computation[J]. Procedia Computer Science, 2019, 165: 104-111. |
30 | Singh T, Patnaik A, Chauhan R. Optimization of tribological properties of cement kiln dust-filled brake pad using grey relation analysis[J]. Materials and Design, 2016, 89: 1335-1342. |
31 | Li G D, Yamaguchi D, Nagai M. A grey-based decision-making approach to the supplier selection problem[J]. Mathematical & Computer Modelling, 2007, 46(3/4): 573-581. |
32 | Qiu B, Wang F, Li Y, et al. Research on method of simulation model validation based on improved grey relational analysis[J]. Physics Procedia, 2012, 25: 1118-1125. |
33 | Chan J W K, Tong T K L. Multi-criteria material selections and end-of-life product strategy: grey relational analysis approach[J]. Materials and Design, 2007, 28(5): 1539-1546. |
34 | 李海林, 郭崇慧. 基于形态特征的时间序列符号聚合近似方法[J]. 模式识别与人工智能, 2011, 24(5): 665-672. |
Li H L, Guo C H. Symbolic aggregate approximation based on shape features[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(5): 665-672. | |
35 | Chen N, Xue Y, Ding J, et al. Symbolizing for wind speed time series[J]. Automation of Electric Power Systems, 2017, 41(11): 33-38. |
36 | Lu B, Castillo I, Chiang L, et al. Industrial PLS model variable selection using moving window variable importance in projection[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 135: 90-109. |
37 | Tang H, Liu S. Basic theory of fuzzy Bayesian networks and its application in machinery fault diagnosis[C]//Fourth International Conference on Fuzzy Systems and Knowledge Discovery, New Jersey: IEEE Computer Society, 2007: 132-137. |
38 | Chelson P O. Reliability computation using fault tree analysis[R]. Jet Propulsion Laboratory 32-1542, 1971. |
39 | Straube S, Krell M M. How to evaluate an agent's behavior to infrequent events?-Reliable performance estimation insensitive to class distribution[J]. Frontiers in Computational Neuroscience, 2014, 8: 43-43. |
[1] | 张逸豪, 王振雷. 基于最大信息系数的分组支持向量数据描述故障检测[J]. 化工学报, 2023, 74(9): 3865-3878. |
[2] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[3] | 宋冰, 郑城风, 侍洪波, 陶阳, 谭帅. 基于VAE-OCCA的质量相关故障检测方法研究[J]. 化工学报, 2023, 74(4): 1630-1638. |
[4] | 张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[5] | 杨明辉, 刘晓月, 邓晓刚, 廖明燕, 侯春望. 基于加权概率CVDA的动态化工系统微小故障检测[J]. 化工学报, 2022, 73(9): 3963-3972. |
[6] | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
[7] | 郭金玉, 王哲, 李元. 基于核熵独立成分分析的故障检测方法[J]. 化工学报, 2022, 73(8): 3647-3658. |
[8] | 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119. |
[9] | 郭金玉, 李文涛, 李元. 在线压缩KECA的自适应算法在故障检测中的应用[J]. 化工学报, 2021, 72(8): 4227-4238. |
[10] | 李元, 杨东昇, 赵丽颖, 张成. 层次变分高斯混合模型与主多项式分析的故障检测策略[J]. 化工学报, 2021, 72(3): 1616-1626. |
[11] | 王晓慧, 王延江, 邓晓刚, 张政. 基于加权深度支持向量数据描述的工业过程故障检测[J]. 化工学报, 2021, 72(11): 5707-5716. |
[12] | 邓明月, 刘建昌, 许鹏, 谭树彬, 商亮亮. 基于KECA的非线性工业过程故障检测与诊断新方法[J]. 化工学报, 2020, 71(5): 2151-2163. |
[13] | 韩宇, 李俊芳, 高强, 田宇, 禹国刚. 基于故障判别增强KECA算法的故障检测[J]. 化工学报, 2020, 71(3): 1254-1263. |
[14] | 徐静,王振雷,王昕. 基于非线性动态全局局部保留投影算法的化工过程故障检测[J]. 化工学报, 2020, 71(12): 5655-5663. |
[15] | 柴伟, 郭龙航, 池彬彬. 污水处理厂出水水质变量区间预测建模[J]. 化工学报, 2019, 70(9): 3449-3457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||