化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1521-1528.DOI: 10.11949/0438-1157.20201861
王东亮1(),谢江鹏1,周怀荣1,孟文亮1,杨勇1,李德磊2
收稿日期:
2020-12-07
修回日期:
2020-12-21
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
王东亮
作者简介:
王东亮(1982—),男,博士,副教授,基金资助:
WANG Dongliang1(),XIE Jiangpeng1,ZHOU Huairong1,MENG Wenliang1,YANG Yong1,LI Delei2
Received:
2020-12-07
Revised:
2020-12-21
Online:
2021-03-05
Published:
2021-03-05
Contact:
WANG Dongliang
摘要:
有机胺吸收法是一种高效环保型烟气脱硫技术,而从系统工程的角度对烟气SO2捕集工艺的分析、优化和能耗评估尚未有详细报道。对N-甲基二乙醇胺(MDEA)为吸收剂的烟气SO2捕集过程工艺进行研究,考察了MDEA浓度、温度、SO2解吸率对捕集效果的影响规律。结果显示,MDEA溶液浓度为30%(质量)、烟气温度不高于45℃、回流贫液温度不高于41℃时,SO2吸收效果较好;增加SO2解吸率是以降低解吸气中SO2纯度和增大再沸器负荷为代价,水分汽化是再生能耗增高的主要原因。针对吸收剂再生过程能耗大的问题,采用热泵辅助精馏对解吸过程进行能量集成,吸收剂再生能耗可降低47%,年度总费用(TAC)可降低9.93%。本研究对有机胺体系的SO2捕集系统工业化应用具有重要的指导作用。
中图分类号:
王东亮, 谢江鹏, 周怀荣, 孟文亮, 杨勇, 李德磊. 基于MDEA的烟气SO2捕集过程工艺参数和能量集成分析[J]. 化工学报, 2021, 72(3): 1521-1528.
WANG Dongliang, XIE Jiangpeng, ZHOU Huairong, MENG Wenliang, YANG Yong, LI Delei. Parameters analysis and energy integration in flue gas SO2 capture process based on MDEA[J]. CIESC Journal, 2021, 72(3): 1521-1528.
平衡常数 | C1 | C2 | C3 | C4 |
---|---|---|---|---|
K1 | -9.42 | -4234.98 | 0 | 0 |
K2 | 132.90 | -13445.90 | -22.48 | 0 |
K3 | 231.47 | -12092.10 | -36.78 | 0 |
K4 | -5.98 | 637.40 | 0 | 0.01 |
K5 | 216.05 | -12431.70 | -35.48 | 0 |
K6 | -25.29 | 1333.40 | 0 | 0 |
表1 平衡常数表达式中相关系数
Table 1 The correlation coefficient in the equilibrium constant expression
平衡常数 | C1 | C2 | C3 | C4 |
---|---|---|---|---|
K1 | -9.42 | -4234.98 | 0 | 0 |
K2 | 132.90 | -13445.90 | -22.48 | 0 |
K3 | 231.47 | -12092.10 | -36.78 | 0 |
K4 | -5.98 | 637.40 | 0 | 0.01 |
K5 | 216.05 | -12431.70 | -35.48 | 0 |
K6 | -25.29 | 1333.40 | 0 | 0 |
项目 | 吸收塔 | 解吸塔 | 废液 | 补充液 | ||||
---|---|---|---|---|---|---|---|---|
原烟气 | 回流贫液 | 净烟气 | 高温富液 | 解吸气 | 高温贫液 | |||
温度/°C | 45 | 41 | 38 | 90 | 40 | 106 | 41 | 41 |
压力/kPa | 120 | 120 | 110 | 120 | 44 | 118 | 120 | 120 |
塔板数 | 10 | 12 | ||||||
进料位置 | 1 | 10 | 5 | |||||
液气比/回流比 | 0.15 | 9.62 | ||||||
流量/(kg/h) | 90254 | 13575 | 90580 | 13249 | 337 | 12912 | 118 | 781 |
组成/% (mass) | ||||||||
N2 | 73.05 | 0 | 72.79 | 0 | 0.03 | 0 | 0 | 0 |
CO2 | 16.05 | 0 | 15.99 | 0 | 0 | 0 | 0.27 | 0 |
SO2 | 0.39 | 0 | 0.01 | 0 | 94.43 | 0.02 | 0 | 0 |
SO3 | 0.01 | 0 | 0.01 | 0.02 | 0.60 | 0 | 0 | 0 |
H2O | 2.67 | 69.83 | 3.40 | 65.76 | 4.93 | 68.05 | 0.11 | 88.73 |
O2 | 7.83 | 0 | 7.80 | 0 | 0.01 | 0 | 0 | 0 |
MDEA | 0 | 30.17 | 0 | 21.63 | 0 | 31.12 | 8.08 | 11.27 |
MDEA+ | 0 | 0 | 0 | 9.37 | 0 | 0.61 | 66.76 | 0 |
H3O+ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
HCO3- | 0 | 0 | 0 | 0.01 | 0 | 0.01 | 0.65 | 0 |
HSO3- | 0 | 0 | 0 | 0.21 | 0 | 0.01 | 4.78 | 0 |
CO32- | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
SO32- | 0 | 0 | 0 | 3.01 | 0 | 0.19 | 19.28 | 0 |
OH- | 0 | 0 | 0 | 0 | 0 | 0 | 0.07 | 0 |
再沸器负荷/kW | 2326 | |||||||
冷凝器负荷/kW | 206 | 1815 |
表2 MDEA水溶液捕集SO2过程的模拟结果
Table 2 Simulation results of the SO2 trapping process in MDEA aqueous solution
项目 | 吸收塔 | 解吸塔 | 废液 | 补充液 | ||||
---|---|---|---|---|---|---|---|---|
原烟气 | 回流贫液 | 净烟气 | 高温富液 | 解吸气 | 高温贫液 | |||
温度/°C | 45 | 41 | 38 | 90 | 40 | 106 | 41 | 41 |
压力/kPa | 120 | 120 | 110 | 120 | 44 | 118 | 120 | 120 |
塔板数 | 10 | 12 | ||||||
进料位置 | 1 | 10 | 5 | |||||
液气比/回流比 | 0.15 | 9.62 | ||||||
流量/(kg/h) | 90254 | 13575 | 90580 | 13249 | 337 | 12912 | 118 | 781 |
组成/% (mass) | ||||||||
N2 | 73.05 | 0 | 72.79 | 0 | 0.03 | 0 | 0 | 0 |
CO2 | 16.05 | 0 | 15.99 | 0 | 0 | 0 | 0.27 | 0 |
SO2 | 0.39 | 0 | 0.01 | 0 | 94.43 | 0.02 | 0 | 0 |
SO3 | 0.01 | 0 | 0.01 | 0.02 | 0.60 | 0 | 0 | 0 |
H2O | 2.67 | 69.83 | 3.40 | 65.76 | 4.93 | 68.05 | 0.11 | 88.73 |
O2 | 7.83 | 0 | 7.80 | 0 | 0.01 | 0 | 0 | 0 |
MDEA | 0 | 30.17 | 0 | 21.63 | 0 | 31.12 | 8.08 | 11.27 |
MDEA+ | 0 | 0 | 0 | 9.37 | 0 | 0.61 | 66.76 | 0 |
H3O+ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
HCO3- | 0 | 0 | 0 | 0.01 | 0 | 0.01 | 0.65 | 0 |
HSO3- | 0 | 0 | 0 | 0.21 | 0 | 0.01 | 4.78 | 0 |
CO32- | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
SO32- | 0 | 0 | 0 | 3.01 | 0 | 0.19 | 19.28 | 0 |
OH- | 0 | 0 | 0 | 0 | 0 | 0 | 0.07 | 0 |
再沸器负荷/kW | 2326 | |||||||
冷凝器负荷/kW | 206 | 1815 |
项目 | 计算式 |
---|---|
IC | |
塔壳成本/CNY | 17640×(D)1.066×(H)0.802×Er |
塔盘成本/CNY | 482×(D)1.066×(H′)0.802×Er |
塔径D/m | Aspen tray sizing |
塔高H/m | 1.2×0.6×NT |
塔有效高度H′/m | 0.6×NT |
换热器成本/CNY | 7296×(A)0.65×Er |
压缩机成本/CNY | 50715×(0.746P)0.82×Er |
OP | |
蒸汽成本/CNY | 8000×220×QR |
冷却水成本/CNY | 8000×0.4×QC |
用电成本/CNY | 8000×0.55×QE |
MDEA价格/(CNY/t) | 3700 |
水价格/(CNY/m3) | 1 |
TAC/CNY |
表3 经济分析计算公式
Table 3 Economic analysis calculation formula
项目 | 计算式 |
---|---|
IC | |
塔壳成本/CNY | 17640×(D)1.066×(H)0.802×Er |
塔盘成本/CNY | 482×(D)1.066×(H′)0.802×Er |
塔径D/m | Aspen tray sizing |
塔高H/m | 1.2×0.6×NT |
塔有效高度H′/m | 0.6×NT |
换热器成本/CNY | 7296×(A)0.65×Er |
压缩机成本/CNY | 50715×(0.746P)0.82×Er |
OP | |
蒸汽成本/CNY | 8000×220×QR |
冷却水成本/CNY | 8000×0.4×QC |
用电成本/CNY | 8000×0.55×QE |
MDEA价格/(CNY/t) | 3700 |
水价格/(CNY/m3) | 1 |
TAC/CNY |
1 | 武春锦, 吕武华, 梅毅, 等. 湿法烟气脱硫技术及运行经济性分析[J]. 化工进展, 2015, 34(12): 4368-4374. |
Wu C J, Lyu W H, Mei Y, et al. Application and running economic analysis of wet flue gas desulfurization technology[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4368-4374. | |
2 | 崔国凯, 赵宁, 张峰涛, 等. 离子液体捕集二氧化硫气体的研究进展[J]. 科学通报, 2016, 61(28): 3115-3126. |
Cui G K, Zhao N, Zhang F T, et al. Progress in SO2 capture by ionic liquids[J]. Chinese Science Bulletin, 2016, 61(28): 3115–3126. | |
3 | 杨阳, 张桥. 液相克劳斯法脱硫过程模拟与分析[J]. 计算机与应用化学, 2018, 35(10): 792-798. |
Yang Y, Zhang Q. Simulation and analysis of wet Claus desulfurization process[J]. Computers and Applied Chemistry, 2018, 35(10): 792-798. | |
4 | 彭涛嘉, 张千霞. 白银公司第三冶炼厂锌精馏烟气治理对环境的影响[J]. 甘肃冶金, 2020, 42(1): 102-105. |
Peng T J, Zhang Q X. Environmental impact of zinc rectification flue gas treatment in Baiyin third smelter[J]. Gansu Metallurgy, 2020, 42(1): 102-105. | |
5 | 刘应书, 孙宁起, 李子宜, 等. 冷凝法回收烟气吸附脱硫解吸气中SO2工艺参数的影响规律研究[J]. 化工学报, 2020, 71(12): 5620-5627. |
Liu Y S, Sun N Q, Li Z Y, et al. Influence of process parameters of condensation on the recovery of SO2 in desorption gas from flue gas adsorption desulfurization[J]. CIESC Journal, 2020, 71(12): 5620-5627. | |
6 | 陈健, 罗伟亮, 李晗. 有机胺吸收二氧化碳的热力学和动力学研究进展[J]. 化工学报, 2014, 65(1): 12-21. |
Chen J, Luo W L, Li H. A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines[J]. CIESC Journal, 2014, 65(1): 12-21. | |
16 | Wang Y, Zou H K, Chu G W, et al. Experimental study of SO2 absorption with a mixture of ethylenediamine and dimethyl sulfoxide[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2011, 38(5):25-28. |
17 | 汤志刚, 周长城, 陈成. 乙二胺/磷酸溶液化学吸收法烟气脱硫的研究[J]. 高校化学工程学报, 2005, 19(3): 285-291. |
7 | 张娇静, 宋华, 白冰, 等. 有机醇胺溶液中H2S气体溶解性能评价[J]. 化工进展, 2012, 31(7): 1432-1436. |
Zhang J J, Song H, Bai B, et al. Evaluation of dissolution of H2S in aqueous solution of organic alkanolamine[J]. Chemical Industry and Engineering Progress, 2012, 31(7): 1432-1436. | |
8 | 陆建刚, 王连军, 李健生, 等. MDEA-TBEE复合溶剂吸收酸性气体性能的研究[J]. 高校化学工程学报, 2005, 19(4): 450-455. |
Lu J G, Wang L J, Li J S, et al. A study on performances of acidic gases absorption into aqueous solution of MDEA-TBEE complex solvents[J]. Journal of Chemical Engineering of Chinese Universities, 2005, 19(4): 450-455. | |
9 | Hakka L E. Removal and recovery of sulphur dioxide from gas streams: US5019361[P]. 1991-05-28. |
10 | Hanif M A, Ibrahim N, Abdul Jalil A. Sulfur dioxide removal: an overview of regenerative flue gas desulfurization and factors affecting desulfurization capacity and sorbent regeneration[J]. Environmental Science and Pollution Research, 2020, 27: 27515-27540. |
11 | van Dam M H H, Lamine A S, Roizard D, et al. Selective sulfur dioxide removal using organic solvents[J]. Industrial & Engineering Chemistry Research, 1997, 36(11): 4628-4637. |
12 | 孙志豪, 郭子东, 陈俊, 等. 哌嗪类有机胺脱除二氧化硫性能及机理探讨[J]. 化工进展, 2019, 38(S1): 46-51. |
Sun Z H, Guo Z D, Chen J, et al. Performances and mechanism of piperazine-based organic amines removal of SO2[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 46-51. | |
13 | Hakka L E, Parisi P J. Safe storage and transportation of sulfur dioxide: US3904735[P]. 1998-09-25. |
14 | 徐宏建, 金吉钊, 孙雅萍, 等. 可再生型有机胺脱除SO2的实验研究[J]. 动力工程学报, 2016, 36(3): 227-235. |
Xu H J, Jin J Z, Sun Y P, et al. Experimental study on SO2 removal with renewable organic amines[J]. Journal of Chinese Society of Power Engineering, 2016, 36(3): 227-235. | |
15 | 徐宏建, 金吉钊, 王珞琪, 等. N-甲基二乙醇胺水溶液脱除SO2热力学分析[J]. 热力发电, 2015, 44(12): 46-50. |
Xu H J, Jin J Z, Wang L Q, et al. Thermodynamic analysis of SO2 removal by N-methyldiethanolamine solution[J]. Thermal Power Generation, 2015, 44(12): 46-50. | |
16 | 王月, 邹海魁, 初广文, 等. 乙二胺/二甲基亚砜复合吸收剂脱除SO2的实验研究[J]. 北京化工大学学报(自然科学版), 2011, 38(5):25-28. |
17 | Tang Z G, Zhou C C, Chen C. Chemical absorption of SO2 by using ethylene diamine/phosphoric acid solution[J]. Journal of Chemical Engineering of Chinese Universities, 2005, 19(3): 285-291. |
18 | 王端阳, 李炼, 李娜, 等. 一种估算CO2和SO2在多元胺水溶液体系中溶解度的数学模型[J]. 计算机与应用化学, 2013, 30(5): 492-496. |
Wang D Y, Li L, Li N, et al. A simple mathematical model for estimating the solubility of CO2 and SO2 in the ploy-amines aqueous solutions[J]. Computers and Applied Chemistry, 2013, 30(5): 492-496. | |
19 | 林海周, 罗海中, 裴爱国, 等. 燃煤电厂烟气MDEA/PZ混合胺法碳捕集工艺模拟分析[J]. 化工进展, 2019, 38(4): 2046-2055. |
Lin H Z, Luo H Z, Pei A G, et al. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 2046-2055. | |
20 | 马志研. 炼厂气MDEA脱硫系统模拟与优化[J]. 当代化工, 2016, 45(7): 1571-1575. |
Ma Z Y. Simulation and optimization of refinery gas MDEA desulfurization system[J]. Contemporary Chemical Industry, 2016, 45(7): 1571-1575. | |
21 | Farzaneh A, Saghatoleslami N. A rate-based model approach for the absorption of acid gases by aqueous solution of MDEA, using Aspen Plus simulator[J]. Chemical Technology, 2015, 10(3): 111-117. |
22 | Rezazadeh F, Gale W, Lin Y, et al. Energy performance of advanced reboiled and flash stripper configurations for CO2 capture using monoethanolamine[J]. Industrial & Engineering Chemistry Research, 2016, 55(16): 4622-4631. |
23 | Wang T, He H, Yu W, et al. Process simulations of CO2 desorption in the interaction between the novel direct steam stripping process and solvents[J]. Energy & Fuels, 2017, 31(4): 4255-4262. |
24 | Jana K, De S. Biomass integrated combined power plant with post combustion CO2 capture-performance study by Aspen Plus[J]. Energy Procedia, 2014, 54: 166-176. |
25 | 陈东良, 张忠林, 杨景轩, 等. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945. |
Chen D L, Zhang Z L, Yang J X, et al. Process simulation and energy saving analysis of CO2 capture by chemical absorption method based on self-heat recuperation[J]. CIESC Journal, 2019, 70(8): 2938-2945. | |
26 | 陆诗建, 高丽娟, 王家凤, 等. 烟气CO2捕集热能梯级利用节能工艺耦合优化[J]. 化学进展, 2020, 39(2): 728-737. |
Lu S J, Gao L J, Wang J F, et al. Coupling optimization of energy-saving technology for cascade utilization of flue gas CO2 capture system[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 728-737. | |
27 | 骆永国. 基于热泵技术的MEA法CO2捕集系统模拟分析[D]. 青岛: 山东科技大学, 2011. |
Luo Y G. Simulation analysis on CO2 capture by MEA method based on heat pump technology[D]. Qingdao: Shandong University of Science and Technology, 2011. | |
28 | 王东亮, 孟文亮, 杨勇, 等. 热泵耦合甲醇多效精馏节能新工艺[J]. 化工进展, 2020, 39(9): 3550-3555. |
Wang D L, Meng W L, Yang Y, et al. A novel methanol distillation process combining heat pump and multi-effect process[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3550-3555. | |
29 | Pleşu V, Bonet Ruiz A E, Bonet J, et al. Simple equation for suitability of heat pump use in distillation[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2014: 1327-1332. |
30 | Douglas M J. Concept Design of Chemical Process[M]. New York: McGraw-Hill, 1988: 349–350. |
[1] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[2] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[3] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[4] | 平甜甜, 尹鑫, 董玉, 申淑锋. 有机胺非水溶液吸收CO2的动力学研究进展[J]. 化工学报, 2021, 72(8): 3968-3983. |
[5] | 朱鹏飞, 郭磊磊, 尧兢, 杨福胜, 张早校, 吴震. 以生物质为燃料的SOFC和发动机热电联供系统:参数分析和性能优化[J]. 化工学报, 2021, 72(2): 1089-1099. |
[6] | 彭肖祎, 董轩, 廖祖维, 杨遥, 孙婧元, 蒋斌波, 王靖岱, 阳永荣. 数学规划与图形方法相结合设计热集成用水网络[J]. 化工学报, 2021, 72(2): 1047-1058. |
[7] | 刘宏, 赵雅静, 李英栋, 李凭力. 新型复合式内部能量集成的精馏塔的机械设计与水力学模拟[J]. 化工学报, 2020, 71(5): 1995-2003. |
[8] | 胡晓伟, 吕莉, 梁斌, 邱礼有, 袁绍军, 郑东钥. 三聚氰胺与SO2反应及再生行为[J]. 化工学报, 2018, 69(9): 4012-4018. |
[9] | 黄旭, 罗祎青, 袁希钢. 带共沸的乙醇/乙酸乙酯/2-丁酮三元物系变压精馏分离过程及其参数优化[J]. 化工学报, 2018, 69(5): 2089-2099. |
[10] | 陈健, 罗伟亮, 李晗. 有机胺吸收二氧化碳的热力学和动力学研究进展[J]. CIESC Journal, 2014, 65(1): 12-21. |
[11] | 张国辉, 王晓光, William Conway, Marcel Maeder, 孙琦, 于海. 二氧化碳、碳酸氢盐与有机伯胺和仲胺反应机理[J]. 化工学报, 2013, 64(8): 2883-2890. |
[12] | 毛庭璧, 罗祎青, 袁希钢. 考虑非等温混合的能量集成水网络设计方法 [J]. 化工学报, 2010, 61(2): 369-377. |
[13] | 涂敏, 汤广发, 任承钦, 曾阳, 蔡德宏. 溶液除湿系统中除湿塔的参数分析 [J]. 化工学报, 2010, 61(10): 2546-2551. |
[14] | 赵贺猛,田恒水. 有机胺催化酯交换合成聚碳酸酯树脂工艺 [J]. CIESC Journal, 2010, 29(1): 67-. |
[15] | 赵雄, 罗祎青, 闫兵海, 袁希钢. 内部能量集成精馏塔的模拟研究及其节能特性分析 [J]. 化工学报, 2009, 60(1): 142-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||