化工学报 ›› 2023, Vol. 74 ›› Issue (1): 237-256.DOI: 10.11949/0438-1157.20221076
收稿日期:
2022-08-01
修回日期:
2022-09-15
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
罗正鸿
作者简介:
王煦清(1999—),女,博士研究生,xuqing_wang@sjtu.edu.cn
基金资助:
Xuqing WANG(), Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO()
Received:
2022-08-01
Revised:
2022-09-15
Online:
2023-01-05
Published:
2023-03-20
Contact:
Zhenghong LUO
摘要:
胺法吸收CO2是典型的气液传质和反应问题。填料塔作为化工生产中重要的气液分离设备,其填料层空隙率高的特性使得其具有传质效率高、生产能力大、操作弹性大等优点。本文主要依据填料塔持液量低、填料层压降小的流体力学性能和液泛气速高的操作特性,结合有机胺吸收CO2的反应特点,基于传质理论,综述了操作温度、CO2负荷与分压、惰性气体流速、液相流速和温度、有机胺种类和浓度以及填料类型对CO2吸收过程中传质性能的影响。在后续研究中,可以从实验和模拟相结合的角度对填料塔中有机胺吸收CO2气液传质和反应过程进行深入研究,进一步提高填料传质效率和提升溶剂吸收性能。
中图分类号:
王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256.
Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column[J]. CIESC Journal, 2023, 74(1): 237-256.
吸收剂溶质 | 吸收剂浓度/ (kmol·m-3) | 填料种类 | 填料塔 塔高/m | 填料层 高度/m | 填料塔 内径/mm | 液相进料 温度/℃ | 液相流速/ (m3·m-2·h-1) | 惰性气体流速/ (kmol·m-2·h-1) | CO2分压 | CO2负荷/ (mol·(mol 胺)-1) | 气相 温度/℃ | KGav /(kmol·m-3·h-1·kPa-1) | 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEA | 3.0~5.2 | Gempak 4A | — | 0.98/2.21 | 0.1 | 20/37 | 7.6~22.9 | 38.6 | 15.1% | — | — | 0.83~0.91 | [ |
MEA | 3.0 | BX | — | 1.02 | 0.250 | 34~37 | 7.9 | 30.0 | 12.4% | — | — | — | [ |
DEEA | 1.0~4.0 | DX | 1.70 | — | 28.0 | 20~60 | 3.90~11.70 | 30.5~43.52 | 3~15 kPa | 0.05~0.20 | 20~60 | 0.09~0.22 | [ |
MEA/ DEA/ DIPA①/ MDEA②/ AMP | 3.0 | DX | 2.00 | — | 20.0 | — | 4.8~10.0 | 48.2 | 10% | 0/ 0.25/ 0.40 | 25 | 0.85~2.93/ 0.18~1.15/ 0.11~0.45/ 0.02~0.09/ 0.22~0.95 | [ |
MEA | 3.0~7.0 | DX | 0.615~0.825 | — | 20.0 | 30~50 | 5.0~20.0 | 0.43~0.60 m3·m-2·s-1 | 3.7~15.2 kPa | 0.2~0.6 | — | 0.14~3.14 | [ |
MEA | 1.0~3.0 | DX | 2.245 | 2.035 | 25.4 | 25 | 5.26~10.52 | 17.33~24.84 | 13.4%~14.8% | 0.011~0.156 | 25 | 0.07~3.59 | [ |
DEAB | 1.0~3.0 | DX | 2.245 | 2.035 | 25.4 | 25 | 5.26~10.52 | 17.19~24.80 | 14.6%~14.8% | 0.136~0.173 | 25 | 0.06~3.35 | [ |
AMP | 1.1~3.0 | EX | 1.77 | 0.055 | 19.0 | 24 | 6.1~14.6 | 46.2~96.8 | 10 kPa | — | — | 0.16~1.07 | [ |
MEA | 2.0~5.0 | Dixon环 | — | 1.40 | 24.0 | 30~50 | 3.98~9.29 | 24.98~39.45 | 14.8%~15.3% | 0.008~0.230 | 30~50 | 0.26~0.40 | [ |
DETA | 1.0~4.0 | Dixon环 | — | 1.40 | 24.0 | 30~50 | 2.65~7.56 | 28.78~46.62 | 15.1%~15.8% | 0.052~0.819 | 30~50 | 0.25~1.28 | [ |
DMEA | 1.0~4.0 | DX | 1.70 | — | 28.0 | 20~60 | 3.90~11.70 | 26.11~43.52 | 6~20 kPa | 0.05~0.30 | 25 | 0.08~0.15 | [ |
MEA | 3.0 | 拉西环 | 1.80 | — | 25.0 | — | 5.3/10.6/15.9 | — | 5%/10%/15% | 0/0.1/0.2 | — | 0.08~0.59 | [ |
DEAB | 1.0~2.0 | DX | 2.15 | — | 275.0 | 25~40 | 3.90~7.80 | 17.85 | — | 0.09~0.28 | 25~40 | 0.04~0.18 | [ |
MEA (5MPa高压) | 1.0~4.0 | 金属丝网波纹填料 | 2.04 | — | 46.0 | 27~45 | 1.81~4.51 | 18.89~35.08 | 20% | — | — | 0.18~5.29 | [ |
表1 填料塔内单组分有机胺纯水溶液吸收CO2的实验条件和结果
Table 1 Experimental conditions and results for CO2 absorption by pure aqueous solutions of amines in packed column
吸收剂溶质 | 吸收剂浓度/ (kmol·m-3) | 填料种类 | 填料塔 塔高/m | 填料层 高度/m | 填料塔 内径/mm | 液相进料 温度/℃ | 液相流速/ (m3·m-2·h-1) | 惰性气体流速/ (kmol·m-2·h-1) | CO2分压 | CO2负荷/ (mol·(mol 胺)-1) | 气相 温度/℃ | KGav /(kmol·m-3·h-1·kPa-1) | 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEA | 3.0~5.2 | Gempak 4A | — | 0.98/2.21 | 0.1 | 20/37 | 7.6~22.9 | 38.6 | 15.1% | — | — | 0.83~0.91 | [ |
MEA | 3.0 | BX | — | 1.02 | 0.250 | 34~37 | 7.9 | 30.0 | 12.4% | — | — | — | [ |
DEEA | 1.0~4.0 | DX | 1.70 | — | 28.0 | 20~60 | 3.90~11.70 | 30.5~43.52 | 3~15 kPa | 0.05~0.20 | 20~60 | 0.09~0.22 | [ |
MEA/ DEA/ DIPA①/ MDEA②/ AMP | 3.0 | DX | 2.00 | — | 20.0 | — | 4.8~10.0 | 48.2 | 10% | 0/ 0.25/ 0.40 | 25 | 0.85~2.93/ 0.18~1.15/ 0.11~0.45/ 0.02~0.09/ 0.22~0.95 | [ |
MEA | 3.0~7.0 | DX | 0.615~0.825 | — | 20.0 | 30~50 | 5.0~20.0 | 0.43~0.60 m3·m-2·s-1 | 3.7~15.2 kPa | 0.2~0.6 | — | 0.14~3.14 | [ |
MEA | 1.0~3.0 | DX | 2.245 | 2.035 | 25.4 | 25 | 5.26~10.52 | 17.33~24.84 | 13.4%~14.8% | 0.011~0.156 | 25 | 0.07~3.59 | [ |
DEAB | 1.0~3.0 | DX | 2.245 | 2.035 | 25.4 | 25 | 5.26~10.52 | 17.19~24.80 | 14.6%~14.8% | 0.136~0.173 | 25 | 0.06~3.35 | [ |
AMP | 1.1~3.0 | EX | 1.77 | 0.055 | 19.0 | 24 | 6.1~14.6 | 46.2~96.8 | 10 kPa | — | — | 0.16~1.07 | [ |
MEA | 2.0~5.0 | Dixon环 | — | 1.40 | 24.0 | 30~50 | 3.98~9.29 | 24.98~39.45 | 14.8%~15.3% | 0.008~0.230 | 30~50 | 0.26~0.40 | [ |
DETA | 1.0~4.0 | Dixon环 | — | 1.40 | 24.0 | 30~50 | 2.65~7.56 | 28.78~46.62 | 15.1%~15.8% | 0.052~0.819 | 30~50 | 0.25~1.28 | [ |
DMEA | 1.0~4.0 | DX | 1.70 | — | 28.0 | 20~60 | 3.90~11.70 | 26.11~43.52 | 6~20 kPa | 0.05~0.30 | 25 | 0.08~0.15 | [ |
MEA | 3.0 | 拉西环 | 1.80 | — | 25.0 | — | 5.3/10.6/15.9 | — | 5%/10%/15% | 0/0.1/0.2 | — | 0.08~0.59 | [ |
DEAB | 1.0~2.0 | DX | 2.15 | — | 275.0 | 25~40 | 3.90~7.80 | 17.85 | — | 0.09~0.28 | 25~40 | 0.04~0.18 | [ |
MEA (5MPa高压) | 1.0~4.0 | 金属丝网波纹填料 | 2.04 | — | 46.0 | 27~45 | 1.81~4.51 | 18.89~35.08 | 20% | — | — | 0.18~5.29 | [ |
吸收剂 | 吸收剂浓度/ (kmol·m-3) | 填料种类 | 填料塔 塔高/m | 填料层 高度/m | 填料塔 内径/mm | 液相进料 温度/℃ | 液相流速/ (m3·m-2·h-1) | 惰性气体流速 | CO2分压 | CO2负荷/ (mol·(mol 胺)-1) | 气相 温度/℃ | KGav /(kmol· m-3·h-1·kPa-1) | 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEA水溶液/ 甲醇溶液/ 等比例甲醇水溶液 | 5.0 | DX | 0.4 | — | 34.0 | — | 12~98 ml·min-1 | 5/6/7/8/10 L·min-1 | 15% | 0.050~0.300 | 25 | 0.35~2.29/ 2.89~5.36/ 1.60~3.80 | [ |
MEA甲醇水溶液 | 2.5~5.0 | DX | 1.7 | — | 28.0 | 10 | 2.92~16.09 | 24.37~63.54 kmol·m-2·h-1 | 6.7~13.8 kPa | 0~0.373 | — | 0.19~3.70 | [ |
MEA甲醇溶液 | 30%(质量)MEA | BX500/ Mellapale Y500/ 鲍尔环 | 2.5 | — | DN150 | — | 20/30/40 L·h-1 | 3/4/5 m3·h-1 | 15% | — | — | 4.57/ 3.35/ 3.30 | [ |
MEA水溶液/ 甲醇溶液 | 15%~30%(质量)MEA | 鲍尔环 | 2.0 | — | 97.0 | 35~55 | 0.75~1.25 L·min-1 | 50~100 L·min-1 | 5%~15% (物质的量) | — | 27 | 0.60~2.42/ 0.95~5.45 | [ |
MEA环丁砜水溶液 | 30%(质量)MEA& 20%(质量)环丁砜 | Dixon环 | — | 1.21 | 28.0 | 30~60 | 3.90~11.70 | 26.11~43.52 kmol·m-2·h-1 | 9~20 kPa | 0.2~0.4 | — | 0.17~5.63 | [ |
MEA环丁砜水溶液 | 4/5 kmol·m-3 MEA& 5 kmol·m-3环丁砜 | DX | 1.28 | — | 28.0 | 20~60 | 2.92~5.85 | 33.49~48.07 kmol·m-2·h-1 | 12~20 kPa | 0.204~0.437 | 25 | 0.11~7.40 | [ |
MEA甘油水溶液 | 10%/20%/30%(质量)MEA& 5%/10%/15%(质量)甘油 | 拉西环 | 0.5 | — | 50.0 | 30/37.5/45 | 85 ml·min-1 | 4/5/6 L·min-1 | 10% | — | — | 0.31~0.63 | [ |
表2 填料塔内单组分有机胺非纯水溶液吸收CO2的实验条件和结果
Table 2 Experimental conditions and results for CO2 absorption by non-pure aqueous solutions of amines in packed column
吸收剂 | 吸收剂浓度/ (kmol·m-3) | 填料种类 | 填料塔 塔高/m | 填料层 高度/m | 填料塔 内径/mm | 液相进料 温度/℃ | 液相流速/ (m3·m-2·h-1) | 惰性气体流速 | CO2分压 | CO2负荷/ (mol·(mol 胺)-1) | 气相 温度/℃ | KGav /(kmol· m-3·h-1·kPa-1) | 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEA水溶液/ 甲醇溶液/ 等比例甲醇水溶液 | 5.0 | DX | 0.4 | — | 34.0 | — | 12~98 ml·min-1 | 5/6/7/8/10 L·min-1 | 15% | 0.050~0.300 | 25 | 0.35~2.29/ 2.89~5.36/ 1.60~3.80 | [ |
MEA甲醇水溶液 | 2.5~5.0 | DX | 1.7 | — | 28.0 | 10 | 2.92~16.09 | 24.37~63.54 kmol·m-2·h-1 | 6.7~13.8 kPa | 0~0.373 | — | 0.19~3.70 | [ |
MEA甲醇溶液 | 30%(质量)MEA | BX500/ Mellapale Y500/ 鲍尔环 | 2.5 | — | DN150 | — | 20/30/40 L·h-1 | 3/4/5 m3·h-1 | 15% | — | — | 4.57/ 3.35/ 3.30 | [ |
MEA水溶液/ 甲醇溶液 | 15%~30%(质量)MEA | 鲍尔环 | 2.0 | — | 97.0 | 35~55 | 0.75~1.25 L·min-1 | 50~100 L·min-1 | 5%~15% (物质的量) | — | 27 | 0.60~2.42/ 0.95~5.45 | [ |
MEA环丁砜水溶液 | 30%(质量)MEA& 20%(质量)环丁砜 | Dixon环 | — | 1.21 | 28.0 | 30~60 | 3.90~11.70 | 26.11~43.52 kmol·m-2·h-1 | 9~20 kPa | 0.2~0.4 | — | 0.17~5.63 | [ |
MEA环丁砜水溶液 | 4/5 kmol·m-3 MEA& 5 kmol·m-3环丁砜 | DX | 1.28 | — | 28.0 | 20~60 | 2.92~5.85 | 33.49~48.07 kmol·m-2·h-1 | 12~20 kPa | 0.204~0.437 | 25 | 0.11~7.40 | [ |
MEA甘油水溶液 | 10%/20%/30%(质量)MEA& 5%/10%/15%(质量)甘油 | 拉西环 | 0.5 | — | 50.0 | 30/37.5/45 | 85 ml·min-1 | 4/5/6 L·min-1 | 10% | — | — | 0.31~0.63 | [ |
吸收剂溶质 | 吸收剂浓度/ (kmol·m-3) | 填料种类 | 填料塔 塔高/m | 填料层高度/m | 填料塔 内径/mm | 液相进料 温度/℃ | 液相流速/ (m3·m-2·h-1) | 惰性气体流速/ (kmol·m-2·h-1) | CO2分压 | CO2负荷/ (mol·(mol 胺)-1) | 气相 温度/℃ | KGav /(kmol· m-3·h-1·kPa-1) | 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEA-MDEA/ DEA-MDEA/ MEA-AMP/ DEA-AMP | 3.0 (摩尔比1∶1) | DX | 2.00 | — | 20.0 | 4.8~10.0 | 48.2 | 10% | 0/ 0.25/ 0.40 | 25 | 0.22~0.46/ 0.17~0.20/ 0.73~0.87/ 0.42~0.44 | [ | |
MEA-MDEA | 3.0~7.0 (摩尔比1∶3、 1∶1和3∶1) | DX | 0.615~0.825 | — | 20.0 | 30.0~50.0 | 5.0~20.0 | 0.43~0.60 m3·m-2·s-1 | 3.7~15.2 kPa | 0.2~0.6 | — | 0.05~3.34 | [ |
MEA-MDEA | 摩尔比0.5∶2.3、0.8∶2.1和1.16∶1.95 | DX | 2.15 | — | 27.5 | 25/30/45 | 2.8/3.8/5.0 | — | — | 0.05/0.17/0.25 | 25 | 0.09~0.28/ 0.18~0.71/ 0.44~0.89 | [ |
PZ-DETA/ AEPZ-DETA | DETA+PZ/ AEPZ共30% (其中PZ/AEPZ占10%) | Dixon环 | — | 0.70 | 39.0 | 30~60 | 6.10~12.36 | 27.39~65.48 | 6.1%~14.1% | ≤0.04 | — | 0.42~0.76/ 0.37~0.72 | [ |
PZ-AMP (0.1~4.0MPa高压) | 20%~40%(质量) (摩尔比1∶4) | 金属丝网波纹填料 | 2.04 | — | 46.0 | 30~45 | 2.89~3.97 | 33~51 | — | — | 30~45 | 0.002~0.02 | [ |
PZ-AMP (0.1~5.0MPa高压) | 30%(质量) [PZ:3%/5%/7%/9%(质量)] | 金属丝网波纹填料 | 2.04 | — | 46.0 | 30 | 2.89~4.33 | 33 | 30%~50% | — | 30 | 0.001~0.02 | [ |
MEA-DEEA | 3.0 (摩尔比1∶1) | Dixon环 | 1.28 | — | 28.0 | 25~50 | 3.90~9.75 | 26.11-39.17 | 6~18 kPa | 0.18~0.32 | 25 | 0.11~0.92 | [ |
MEA-DEEA | 2.0~5.0 (摩尔比1∶1) | DX | — | 1.25 | 28.0 | 30~70 | 3.90~11.70 | 30.47~47.87 | 6~18 kPa | 0.15~0.35 | — | 0.14~2.24 | [ |
MEA-DMEA | 6.0 (摩尔比5∶1) | DX | 1.70 | 1.25 | 28.0 | 20~60 | 2.92~5.85 | 33.49~48.07 | 12~20 kPa | 0.204~0.437 | 25 | 0.03~0.81 | [ |
MEA-1DMA2P① | 6.0 (摩尔比5∶1) | DX | 1.70 | 1.25 | 28.0 | 13.03~50.08 | 2.92~5.85 | 33.49~48.07 | 12~20 kPa | 0.204~0.437 | 25 | 0~5.75 | [ |
表3 填料塔内混合胺溶液吸收CO2的实验条件和结果
Table 3 Experimental conditions and results for CO2 absorption by mixed amine solution in packed column
吸收剂溶质 | 吸收剂浓度/ (kmol·m-3) | 填料种类 | 填料塔 塔高/m | 填料层高度/m | 填料塔 内径/mm | 液相进料 温度/℃ | 液相流速/ (m3·m-2·h-1) | 惰性气体流速/ (kmol·m-2·h-1) | CO2分压 | CO2负荷/ (mol·(mol 胺)-1) | 气相 温度/℃ | KGav /(kmol· m-3·h-1·kPa-1) | 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEA-MDEA/ DEA-MDEA/ MEA-AMP/ DEA-AMP | 3.0 (摩尔比1∶1) | DX | 2.00 | — | 20.0 | 4.8~10.0 | 48.2 | 10% | 0/ 0.25/ 0.40 | 25 | 0.22~0.46/ 0.17~0.20/ 0.73~0.87/ 0.42~0.44 | [ | |
MEA-MDEA | 3.0~7.0 (摩尔比1∶3、 1∶1和3∶1) | DX | 0.615~0.825 | — | 20.0 | 30.0~50.0 | 5.0~20.0 | 0.43~0.60 m3·m-2·s-1 | 3.7~15.2 kPa | 0.2~0.6 | — | 0.05~3.34 | [ |
MEA-MDEA | 摩尔比0.5∶2.3、0.8∶2.1和1.16∶1.95 | DX | 2.15 | — | 27.5 | 25/30/45 | 2.8/3.8/5.0 | — | — | 0.05/0.17/0.25 | 25 | 0.09~0.28/ 0.18~0.71/ 0.44~0.89 | [ |
PZ-DETA/ AEPZ-DETA | DETA+PZ/ AEPZ共30% (其中PZ/AEPZ占10%) | Dixon环 | — | 0.70 | 39.0 | 30~60 | 6.10~12.36 | 27.39~65.48 | 6.1%~14.1% | ≤0.04 | — | 0.42~0.76/ 0.37~0.72 | [ |
PZ-AMP (0.1~4.0MPa高压) | 20%~40%(质量) (摩尔比1∶4) | 金属丝网波纹填料 | 2.04 | — | 46.0 | 30~45 | 2.89~3.97 | 33~51 | — | — | 30~45 | 0.002~0.02 | [ |
PZ-AMP (0.1~5.0MPa高压) | 30%(质量) [PZ:3%/5%/7%/9%(质量)] | 金属丝网波纹填料 | 2.04 | — | 46.0 | 30 | 2.89~4.33 | 33 | 30%~50% | — | 30 | 0.001~0.02 | [ |
MEA-DEEA | 3.0 (摩尔比1∶1) | Dixon环 | 1.28 | — | 28.0 | 25~50 | 3.90~9.75 | 26.11-39.17 | 6~18 kPa | 0.18~0.32 | 25 | 0.11~0.92 | [ |
MEA-DEEA | 2.0~5.0 (摩尔比1∶1) | DX | — | 1.25 | 28.0 | 30~70 | 3.90~11.70 | 30.47~47.87 | 6~18 kPa | 0.15~0.35 | — | 0.14~2.24 | [ |
MEA-DMEA | 6.0 (摩尔比5∶1) | DX | 1.70 | 1.25 | 28.0 | 20~60 | 2.92~5.85 | 33.49~48.07 | 12~20 kPa | 0.204~0.437 | 25 | 0.03~0.81 | [ |
MEA-1DMA2P① | 6.0 (摩尔比5∶1) | DX | 1.70 | 1.25 | 28.0 | 13.03~50.08 | 2.92~5.85 | 33.49~48.07 | 12~20 kPa | 0.204~0.437 | 25 | 0~5.75 | [ |
文献 | KGav 拟合经验式 | 适用体系 |
---|---|---|
[ | CO2-DEEA体系 规整填料 AAD:3% | |
CO2-DEEA体系 规整填料 AAD:8% | ||
[ | CO2-DEAB体系 DX型规整填料 AAD:18% | |
[ | CO2-AMP体系 EX型规整填料 | |
[ | CO2-MEA体系 传统散装填料 | |
[ | CO2-MEA体系 Dixon环形填料 AAD:14% | |
[ | CO2-DETA体系 Dixon环形填料 AAD:16% | |
[ | CO2-DEAB体系 DX型规整填料 AAD:14.57% | |
[ | CO2-MEA&环丁砜体系 Dixon环形填料 AAD:10.2% | |
[ | CO2- DMEA体系 Dixon环形填料 AARD①:4.59% | |
[ | CO2-MEA&环丁砜体系 DX型规整填料 AAD:7.8% | |
[ | CO2-MEA+MDEA体系 Dixon环形填料 AAD:20.9% | |
CO2-MEA+MDEA体系 Dixon环形填料 AAD:21.7% | ||
CO2-MEA+MDEA体系 Dixon环形填料 AAD:22.8% | ||
[ | CO2-PZ+DETA体系 Dixon环形填料 AARD:5.35% | |
CO2-AEPZ+DETA体系 Dixon环形填料 AARD:7.32% | ||
[ | CO2-MEA+DEEA体系 Dixon环形填料 AAD:10.4% | |
[ | CO2-MEA+DMEA体系 DX型规整填料 AARD:9.93% | |
[ | CO2-MEA+1DMA2P体系 DX型规整填料 AARD:9.03% |
表4 KGav 经验/半经验模型
Table 4 Semi- or empirical models for KGav
文献 | KGav 拟合经验式 | 适用体系 |
---|---|---|
[ | CO2-DEEA体系 规整填料 AAD:3% | |
CO2-DEEA体系 规整填料 AAD:8% | ||
[ | CO2-DEAB体系 DX型规整填料 AAD:18% | |
[ | CO2-AMP体系 EX型规整填料 | |
[ | CO2-MEA体系 传统散装填料 | |
[ | CO2-MEA体系 Dixon环形填料 AAD:14% | |
[ | CO2-DETA体系 Dixon环形填料 AAD:16% | |
[ | CO2-DEAB体系 DX型规整填料 AAD:14.57% | |
[ | CO2-MEA&环丁砜体系 Dixon环形填料 AAD:10.2% | |
[ | CO2- DMEA体系 Dixon环形填料 AARD①:4.59% | |
[ | CO2-MEA&环丁砜体系 DX型规整填料 AAD:7.8% | |
[ | CO2-MEA+MDEA体系 Dixon环形填料 AAD:20.9% | |
CO2-MEA+MDEA体系 Dixon环形填料 AAD:21.7% | ||
CO2-MEA+MDEA体系 Dixon环形填料 AAD:22.8% | ||
[ | CO2-PZ+DETA体系 Dixon环形填料 AARD:5.35% | |
CO2-AEPZ+DETA体系 Dixon环形填料 AARD:7.32% | ||
[ | CO2-MEA+DEEA体系 Dixon环形填料 AAD:10.4% | |
[ | CO2-MEA+DMEA体系 DX型规整填料 AARD:9.93% | |
[ | CO2-MEA+1DMA2P体系 DX型规整填料 AARD:9.03% |
6 | 杨静怡, 高姣丽, 曹丽琼, 等. CO2液相吸收设备的应用现状与进展[J]. 应用化工, 2021, 50(11): 3095-3098. |
Yang J Y, Gao J L, Cao L Q, et al. Equipment for the liquid absorption of CO2: state of arts[J]. Applied Chemical Industry, 2021, 50(11): 3095-3098. | |
7 | 陈健, 罗伟亮, 李晗. 有机胺吸收二氧化碳的热力学和动力学研究进展[J]. 化工学报, 2014, 65(1): 12-21. |
Chen J, Luo W L, Li H. A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines[J]. CIESC Journal, 2014, 65(1): 12-21. | |
8 | 平甜甜, 尹鑫, 董玉, 等. 有机胺非水溶液吸收CO2的动力学研究进展[J]. 化工学报, 2021, 72(8): 3968-3983. |
Ping T T, Yin X, Dong Y, et al. Research progress on reaction kinetics of CO2 with amines in nonaqueous solvents[J]. CIESC Journal, 2021, 72(8): 3968-3983. | |
9 | Rochelle G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
10 | Aroonwilas A, Veawab A, Tontiwachwuthikul P. Behavior of the mass-transfer coefficient of structured packings in CO2 absorbers with chemical reactions[J]. Industrial & Engineering Chemistry Research, 1999, 38(5): 2044-2050. |
11 | Afkhamipour M, Mofarahi M. Review on the mass transfer performance of CO2 absorption by amine-based solvents in low- and high-pressure absorption packed columns[J]. RSC Advances, 2017, 7(29): 17857-17872. |
12 | Astaria G, Savage D W, Bisio A. Gas Treating with Chemical Solvents[M]. New York: Wiley, 1983. |
13 | Yu K M K, Curcic I, Gabriel J, et al. Recent advances in CO2 capture and utilization[J]. ChemSusChem, 2008, 1(11): 893-899. |
14 | Maddox R N. Gas and Liquid Sweetening[M]//Gas Conditioning and Processing. Norman: John M. Campbell & Co., 1984. |
15 | Vaidya P D, Kenig E Y. CO2-alkanolamine reaction kinetics: a review of recent studies[J]. Chemical Engineering & Technology, 2007, 30(11): 1467-1474. |
16 | 宿辉, 崔琳. 二氧化碳的吸收方法及机理研究[J]. 环境科学与管理, 2006, 31(8): 79-81. |
Su H, Cui L. Research on absorption method and mechanism of carbon dioxide[J]. Environmental Science and Management, 2006, 31(8): 79-81. | |
17 | Caplow M. Kinetics of carbamate formation and breakdown[J]. Journal of the American Chemical Society, 1968, 90(24): 6795-6803. |
18 | Danckwerts P V. The reaction of CO2 with ethanolamines[J]. Chemical Engineering Science, 1979, 34(4): 443-446. |
19 | Crooks J E, Donnellan J P. Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution[J]. Journal of the Chemical Society, Perkin Transactions 2, 1989(4): 331. |
20 | da Silva E F, Svendsen H F. Ab initio study of the reaction of carbamate formation from CO2 and alkanolamines[J]. Industrial & Engineering Chemistry Research, 2004, 43(13): 3413-3418. |
21 | Donaldson T L, Nguyen Y N. Carbon dioxide reaction kinetics and transport in aqueous amine membranes[J]. Industrial & Engineering Chemistry Fundamentals, 1980, 19(3): 260-266. |
22 | Xu B, Gao H X, Luo X, et al. Mass transfer performance of CO2 absorption into aqueous DEEA in packed columns[J]. International Journal of Greenhouse Gas Control, 2016, 51: 11-17. |
23 | DuPart M S, Bacon T R, Edwards D J. Understanding corrosion in alkanolamine gas treating plants: part 2[J]. Hydrocarbon Processing, 1993, 72(5): 89-94. |
24 | Veawab A, Tontiwachwuthikul P, Bhole S D. Studies of corrosion and corrosion control in a CO2-2-amino-2-methyl-1-propanol (AMP) environment[J]. Industrial & Engineering Chemistry Research, 1997, 36(1): 264-269. |
25 | Chowdhury F A, Okabe H, Yamada H, et al. Synthesis and selection of hindered new amine absorbents for CO2 capture[J]. Energy Procedia, 2011, 4: 201-208. |
26 | Goto K, Okabe H, Chowdhury F A, et al. Development of novel absorbents for CO2 capture from blast furnace gas[J]. International Journal of Greenhouse Gas Control, 2011, 5(5): 1214-1219. |
27 | Sema T, Naami A, Liang Z W, et al. 1D absorption kinetics modeling of CO2-DEAB-H2O system[J]. International Journal of Greenhouse Gas Control, 2013, 12: 390-398. |
28 | Chowdhury F A, Yamada H, Matsuzaki Y, et al. Development of novel synthetic amine absorbents for CO2 capture[J]. Energy Procedia, 2014, 63: 572-579. |
29 | 赵毅, 王永斌, 王添颢. 有机胺法吸收二氧化碳的研究进展[J]. 再生资源与循环经济, 2020, 13(7): 26-29. |
Zhao Y, Wang Y B, Wang T H. Research progress on the absorption of carbon dioxide by organic amine method[J]. Recyclable Resources and Circular Economy, 2020, 13(7): 26-29. | |
30 | 胡亚林, 李水娥, 忤恒, 等. CO2混合胺吸收剂的研究进展[J]. 广州化工, 2013, 41(24): 6-8. |
Hu Y L, Li S E, Wu H, et al. Progress on CO2 blended amine absorbents[J]. Guangzhou Chemical Industry, 2013, 41(24): 6-8. | |
31 | Aghel B, Janati S, Wongwises S, et al. Review on CO2 capture by blended amine solutions[J]. International Journal of Greenhouse Gas Control, 2022, 119: 103715. |
32 | Chakravarty T, Phukan U, Weilund R. Reaction of acid gases with mixtures of amines[J]. Chemical Engineering Progress, 1985, 81(4): 32-36. |
33 | Aroonwilas A, Veawab A. Characterization and comparison of the CO2 absorption performance into single and blended alkanolamines in a packed column[J]. Industrial & Engineering Chemistry Research, 2004, 43(9): 2228-2237. |
34 | Gao H X, Wu Z Y, Liu H L, et al. Experimental studies on the effect of tertiary amine promoters in aqueous monoethanolamine (MEA) solutions on the absorption/stripping performances in post-combustion CO2 capture[J]. Energy & Fuels, 2017, 31(12): 13883-13891. |
35 | Ramachandran N, Aboudheir A, Idem R, et al. Kinetics of the absorption of CO2 into mixed aqueous loaded solutions of monoethanolamine and methyldiethanolamine[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2608-2616. |
36 | Setameteekul A, Aroonwilas A, Veawab A. Statistical factorial design analysis for parametric interaction and empirical correlations of CO2 absorption performance in MEA and blended MEA/MDEA processes[J]. Separation and Purification Technology, 2008, 64(1): 16-25. |
1 | Page B, Turan G, Zapantis A, et al. The global status of CCS 2020: vital to achieve net zero[R]. Global CCS Institute, 2020. |
2 | Kanniche M, Gros-Bonnivard R, Jaud P, et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture[J]. Applied Thermal Engineering, 2010, 30(1): 53-62. |
3 | Mirzaei S, Shamiri A, Aroua M K. A review of different solvents, mass transfer, and hydrodynamics for postcombustion CO2 capture[J]. Reviews in Chemical Engineering, 2015, 31(6): 521-561. |
4 | Liang Z W, Fu K Y, Idem R, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J]. Chinese Journal of Chemical Engineering, 2016, 24(2): 278-288. |
5 | 张艺峰, 王茹洁, 邱明英, 等. CO2捕集技术的研究现状[J]. 应用化工, 2021, 50(4): 1082-1086. |
Zhang Y F, Wang R J, Qiu M Y, et al. CO2 capture technology research status[J]. Applied chemical Industry, 2021, 50(4): 1082-1086. | |
37 | Horng S Y, Li M H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + triethanolamine[J]. Industrial & Engineering Chemistry Research, 2002, 41(2): 257-266. |
38 | Huang Y M, Soriano A N, Caparanga A R, et al. Kinetics of absorption of carbon dioxide in 2-amino-2-methyl-l-propanol + N-methyldiethanolamine + water[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1): 76-85. |
39 | Mandal B P, Biswas A K, Bandyopadhyay S S. Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and diethanolamine[J]. Chemical Engineering Science, 2003, 58(18): 4137-4144. |
40 | Samanta A, Bandyopadhyay S S. Absorption of carbon dioxide into piperazine activated aqueous N-methyldiethanolamine[J]. Chemical Engineering Journal, 2011, 171(3): 734-741. |
41 | Usubharatana P, Tontiwachwuthikul P. Enhancement factor and kinetics of CO2 capture by MEA-methanol hybrid solvents[J]. Energy Procedia, 2009, 1(1): 95-102. |
42 | Sema T, Naami A, Usubharatana P, et al. Mass transfer of CO2 absorption in hybrid MEA-methanol solvents in packed column[J]. Energy Procedia, 2013, 37: 883-889. |
43 | Fu K Y, Rongwong W, Liang Z W, et al. Experimental analyses of mass transfer and heat transfer of post-combustion CO2 absorption using hybrid solvent MEA-MeOH in an absorber[J]. Chemical Engineering Journal, 2015, 260: 11-19. |
44 | Gao J, Yin J, Zhu F F, et al. Orthogonal test design to optimize the operating parameters of a hybrid solvent MEA-Methanol in an absorber column packed with three different packing: Sulzer BX500, Mellapale Y500 and Pall rings 16 × 16 for post-combustion CO2 capture[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68: 218-223. |
45 | Rashidi H, Valeh-e-Sheyda P, Sahraie S. A multiobjective experimental based optimization to the CO2 capture process using hybrid solvents of MEA-MeOH and MEA-water[J]. Energy, 2020, 190: 116430. |
46 | Barzagli F, Mani F, Peruzzini M. Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP)[J]. International Journal of Greenhouse Gas Control, 2013, 16: 217-223. |
47 | Ramazani R, Samsami A, Jahanmiri A, et al. Characterization of monoethanolamine + potassium lysinate blend solution as a new chemical absorbent for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2016, 51: 29-35. |
48 | Shamiri A, Shafeeyan M S, Tee H C, et al. Absorption of CO2 into aqueous mixtures of glycerol and monoethanolamine[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 605-613. |
49 | Svendsen H F, Hessen E T, Mejdell T. Carbon dioxide capture by absorption, challenges and possibilities[J]. Chemical Engineering Journal, 2011, 171(3): 718-724. |
50 | Hu L. Carbon dioxide separation by phase enhanced gas-liquid absorption[R]. Office of Scientific and Technical Information (OSTI), 2004. |
51 | 王涛, 刘飞, 方梦祥, 等. 两相吸收剂捕集二氧化碳技术研究进展[J]. 中国电机工程学报, 2021, 41(4): 1186-1196. |
Wang T, Liu F, Fang M X, et al. Research progress in biphasic solvent for CO2 capture technology[J]. Proceedings of the CSEE, 2021, 41(4): 1186-1196. | |
52 | Papadopoulos A I, Tzirakis F, Tsivintzelis I, et al. Phase-change solvents and processes for postcombustion CO2 capture: a detailed review[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5088-5111. |
53 | Zhang S H, Shen Y, Wang L D, et al. Phase change solvents for post-combustion CO2 capture: principle, advances, and challenges[J]. Applied Energy, 2019, 239: 876-897. |
54 | Wang M, Lawal A, Stephenson P, et al. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review[J]. Chemical Engineering Research and Design, 2011, 89(9): 1609-1624. |
55 | Zaman M, Lee J H. Carbon capture from stationary power generation sources: a review of the current status of the technologies[J]. Korean Journal of Chemical Engineering, 2013, 30(8): 1497-1526. |
56 | Henley E J, Seader J D. Equilibrium Stage Separation Operations in Chemical Engineering[M]. New York: Wiley, 1981. |
57 | Seader J. The rate-based approach for modeling staged separations[J]. Chemical Engineering Progress, 1989, 85(10): 41-49. |
58 | Afkhamipour M, Mofarahi M. Comparison of rate-based and equilibrium-stage models of a packed column for post-combustion CO2 capture using 2-amino-2-methyl-1-propanol (AMP) solution[J]. International Journal of Greenhouse Gas Control, 2013, 15: 186-199. |
59 | Whitman W G. The two-film theory of gas absorption[J]. International Journal of Heat and Mass Transfer, 1962, 5(5): 429-433. |
60 | 贾绍义,柴诚敬. 化工传质与分离过程[M]. 2版. 北京: 化学工业出版社, 2007. |
Jia S Y, Chai C J. Chemical Mass Transfer and Separation Processes[M]. 2nd ed. Beijing: Chemical Industry Press, 2007. | |
61 | Higbie R. The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. Trans. AIChE, 1935, 31: 365-389. |
62 | Danckwerts P V. Significance of liquid-film coefficients in gas absorption[J]. Industrial & Engineering Chemistry, 1951, 43(6): 1460-1467. |
63 | Treybal R E. Mass Transfer Operations[M]. Malaysia: McGraw Hill, 1980, 466. |
64 | Liang Z H, Sanpasertparnich T, Tontiwachwuthikul P P, et al. Part 1: Design, modeling and simulation of post-combustion CO2 capture systems using reactive solvents[J]. Carbon Management, 2011, 2(3): 265-288. |
65 | Maneeintr K, Idem R O, Tontiwachwuthikul P, et al. Comparative mass transfer performance studies of CO2 absorption into aqueous solutions of DEAB and MEA[J]. Industrial & Engineering Chemistry Research, 2010, 49(6): 2857-2863. |
66 | Raynal L, Rayana F B, Royon-Lebeaud A. Use of CFD for CO2 absorbers optimum design: from local scale to large industrial scale[J]. Energy Procedia, 2009, 1(1): 917-924. |
67 | Haroun Y, Raynal L, Legendre D. Mass transfer and liquid hold-up determination in structured packing by CFD[J]. Chemical Engineering Science, 2012, 75: 342-348. |
68 | Raynal L, Boyer C, Ballaguet J P. Liquid holdup and pressure drop determination in structured packing with CFD simulations[J]. The Canadian Journal of Chemical Engineering, 2004, 82(5): 871-879. |
69 | Ataki A. Wetting of structured packing elements-CFD and experiment[D]. Germany: Technical University of Kaiserslautern, 2006. |
70 | Haroun Y, Legendre D, Raynal L. Direct numerical simulation of reactive absorption in gas-liquid flow on structured packing using interface capturing method[J]. Chemical Engineering Science, 2010, 65(1): 351-356. |
71 | Raynal L, Royon-Lebeaud A. A multi-scale approach for CFD calculations of gas-liquid flow within large size column equipped with structured packing[J]. Chemical Engineering Science, 2007, 62(24): 7196-7204. |
72 | Macfarlan L H, Phan M T, Eldridge R B. Methodologies for predicting the mass transfer performance of structured packings with computational fluid dynamics: a review[J]. Chemical Engineering and Processing-Process Intensification, 2022, 172: 108798. |
73 | 刘宁馨, 洪伟荣, 郭雅琼. 规整填料上传质现象的CFD模拟研究综述[J]. 化工机械, 2020, 47(5): 584-590. |
Liu N X, Hong W R, Guo Y Q. Review of CFD simulation of the mass transfer within structured packing elements[J]. Chemical Engineering & Machinery, 2020, 47(5): 584-590. | |
74 | Petre C F, Larachi F, Iliuta I, et al. Pressure drop through structured packings: breakdown into the contributing mechanisms by CFD modeling[J]. Chemical Engineering Science, 2003, 58(1): 163-177. |
75 | Dong B, Yuan X G, Yu K T. Determination of liquid mass-transfer coefficients for the absorption of CO2 in alkaline aqueous solutions in structured packing using numerical simulations[J]. Chemical Engineering Research and Design, 2017, 124: 238-251. |
76 | Macfarlan L H, Phan M T, Eldridge R B. Structured packing geometry study for liquid-phase mass transfer and hydrodynamic performance using CFD[J]. Chemical Engineering Science, 2022, 249: 117353. |
77 | Sun B, Zhu M, Liu B T, et al. Investigation of falling liquid film flow on novel structured packing[J]. Industrial & Engineering Chemistry Research, 2013, 52(13): 4950-4956. |
78 | Owens S A, Perkins M R, Eldridge R B, et al. Computational fluid dynamics simulation of structured packing[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 2032-2045. |
79 | Tung V X, Dhir V K. A hydrodynamic model for two-phase flow through porous media[J]. International Journal of Multiphase Flow, 1988, 14(1): 47-65. |
80 | Asendrych D, Niegodajew P, Drobniak S. CFD modelling of CO2 capture in a packed bed by chemical absorption[J]. Chemical and Process Engineering, 2013, 34(2): 269-282. |
81 | Haroun Y, Legendre D, Raynal L. Volume of fluid method for interfacial reactive mass transfer: application to stable liquid film[J]. Chemical Engineering Science, 2010, 65(10): 2896-2909. |
82 | Haroun Y, Raynal L, Alix P. Prediction of effective area and liquid hold-up in structured packings by CFD[J]. Chemical Engineering Research and Design, 2014, 92(11): 2247-2254. |
83 | Hu J G, Yang X G, Yu J G, et al. Numerical simulation of carbon dioxide (CO2) absorption and interfacial mass transfer across vertically wavy falling film[J]. Chemical Engineering Science, 2014, 116: 243-253. |
84 | Sebastia-Saez D, Gu S, Ranganathan P, et al. 3D modeling of hydrodynamics and physical mass transfer characteristics of liquid film flows in structured packing elements[J]. International Journal of Greenhouse Gas Control, 2013, 19: 492-502. |
85 | Aroonwilas A, Tontiwachwuthikul P. Mass transfer coefficients and correlation for CO2 absorption into 2-amino-2-methyl-1-propanol (AMP) using structured packing[J]. Industrial & Engineering Chemistry Research, 1998, 37(2): 569-575. |
86 | Kohl A L, Nielsen R. Gas Purification[M]. Amsterdam: Elsevier, 1997. |
87 | Ennis B, Litster J. Perry’s Chemical Engineers’ Handbook[M]. New York: McGraw-Hill, 1997. |
88 | Fu K Y, Sema T, Liang Z W, et al. Investigation of mass-transfer performance for CO2 absorption into diethylenetriamine (DETA) in a randomly packed column[J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 12058-12064. |
89 | Wen L, Liu H L, Rongwong W, et al. Comparison of overall gas-phase mass transfer coefficient for CO2 absorption between tertiary amines in a randomly packed column[J]. Chemical Engineering & Technology, 2015, 38(8): 1435-1443. |
90 | Naami A, Edali M, Sema T, et al. Mass transfer performance of CO2 absorption into aqueous solutions of 4-diethylamino-2-butanol, monoethanolamine, and N-methyldiethanolamine[J]. Industrial & Engineering Chemistry Research, 2012, 51(18): 6470-6479. |
91 | Ma S C, Zang B, Song H H, et al. Research on mass transfer of CO2 absorption using ammonia solution in spray tower[J]. International Journal of Heat and Mass Transfer, 2013, 67: 696-703. |
92 | Zou L Y, Gao H X, Wu Z Y, et al. Fast screening of amine/physical solvent systems and mass transfer studies on efficient aqueous hybrid MEA/sulfolane solution for postcombustion CO2 capture[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(3): 649-664. |
93 | Ling H, Gao H X, Liang Z W. Comprehensive solubility of N2O and mass transfer studies on an effective reactive N, N-dimethylethanolamine (DMEA) solvent for post-combustion CO2 capture[J]. Chemical Engineering Journal, 2019, 355: 369-379. |
94 | Limlertchareonwanit T, Maneeintr K, Charinpanitkul T. Measurement of mass transfer coefficient of CO2-amine system from absorption process[J]. IOP Conference Series: Materials Science and Engineering, 2020, 859(1): 012011. |
95 | Sema T, Naami A, Fu K Y, et al. Comprehensive mass transfer and reaction kinetics studies of a novel reactive 4-diethylamino-2-butanol solvent for capturing CO2 [J]. Chemical Engineering Science, 2013, 100: 183-194. |
96 | Abdul Halim H N, Shariff A M, Tan L S, et al. Mass transfer performance of CO2 absorption from natural gas using monoethanolamine (MEA) in high pressure operations[J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1675-1680. |
97 | Yin Y H, Qiu A Q, Gao H X, et al. Experimental study of the mass transfer behavior of carbon dioxide absorption into ternary phase change solution in a packed tower[J]. Chinese Journal of Chemical Engineering, 2022, 43: 135-142. |
98 | Valeh-e-Sheyda P, Barati J. Mass transfer performance of carbon dioxide absorption in a packed column using monoethanoleamine-Glycerol as a hybrid solvent[J]. Process Safety and Environmental Protection, 2021, 146: 54-68. |
99 | Naami A, Sema T, Edali M, et al. Analysis and predictive correlation of mass transfer coefficient KG av of blended MDEA-MEA for use in post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2013, 19: 3-12. |
100 | Sheng M P, Liu C G, Ge C Y, et al. Mass-transfer performance of CO2 absorption with aqueous diethylenetriamine-based solutions in a packed column with Dixon rings[J]. Industrial & Engineering Chemistry Research, 2016, 55(40): 10788-10793. |
101 | Halim H N A, Shariff A M, Bustam M A. High pressure CO2 absorption from natural gas using piperazine promoted 2-amino-2-methyl-1-propanol in a packed absorption column[J]. Separation and Purification Technology, 2015, 152: 87-93. |
102 | Hairul N A H, Shariff A M, Bustam M A. Mass transfer performance of 2-amino-2-methyl-1-propanol and piperazine promoted 2-amino-2-methyl-1-propanol blended solvent in high pressure CO2 absorption[J]. International Journal of Greenhouse Gas Control, 2016, 49: 121-127. |
103 | Gao H X, Xu B, Han L, et al. Mass transfer performance and correlations for CO2 absorption into aqueous blended of DEEA/MEA in a random packed column[J]. AIChE Journal, 2017, 63(7): 3048-3057. |
104 | Liao H Y, Gao H X, Xu B, et al. Mass transfer performance studies of aqueous blended DEEA-MEA solution using orthogonal array design in a packed column[J]. Separation and Purification Technology, 2017, 183: 117-126. |
105 | Ling H, Liu S, Wang T Y, et al. Characterization and correlations of CO2 absorption performance into aqueous amine blended solution of monoethanolamine (MEA) and N, N-dimethylethanolamine (DMEA) in a packed column[J]. Energy & Fuels, 2019, 33(8): 7614-7625. |
106 | Ling H, Liu S, Gao H X, et al. Solubility of N2O, equilibrium solubility, mass transfer study and modeling of CO2 absorption into aqueous monoethanolamine (MEA)/1-dimethylamino-2-propanol (1DMA2P) solution for post-combustion CO2 capture[J]. Separation and Purification Technology, 2020, 232: 115957. |
107 | Fourati M, Roig V, Raynal L. Liquid dispersion in packed columns: experiments and numerical modeling[J]. Chemical Engineering Science, 2013, 100: 266-278. |
108 | Niegodajew P, Asendrych D, Marek M, et al. Modelling liquid redistribution in a packed bed[J]. Journal of Physics: Conference Series, 2014, 530: 012053. |
109 | Niegodajew P, Asendrych D. Amine based CO2 capture - CFD simulation of absorber performance[J]. Applied Mathematical Modelling, 2016, 40(23/24): 10222-10237. |
110 | Krótki A, Więcław-Solny L, Tatarczuk A, et al. Laboratory studies of CO2 absorption with the use of 30% aqueous monoethanolamine solution[J]. Arch. Combust., 2012, 12: 195-203. |
111 | Pham D A, Lim Y I, Jee H, et al. Effect of ship tilting and motion on amine absorber with structured-packing for CO2 removal from natural gas[J]. AIChE Journal, 2015, 61(12): 4412-4425. |
112 | Pham D A, Lim Y I, Jee H, et al. Porous media Eulerian computational fluid dynamics (CFD) model of amine absorber with structured-packing for CO2 removal[J]. Chemical Engineering Science, 2015, 132: 259-270. |
113 | Kim J, Pham D A, Lim Y I. Gas-liquid multiphase computational fluid dynamics (CFD) of amine absorption column with structured-packing for CO2 capture[J]. Computers & Chemical Engineering, 2016, 88: 39-49. |
114 | Notz R, Mangalapally H P, Hasse H. Post combustion CO2 capture by reactive absorption: pilot plant description and results of systematic studies with MEA[J]. International Journal of Greenhouse Gas Control, 2012, 6: 84-112. |
115 | Gbadago D Q, Oh H T, Oh D H, et al. CFD simulation of a packed bed industrial absorber with interbed liquid distributors[J]. International Journal of Greenhouse Gas Control, 2020, 95: 102983. |
116 | Pan W X, Galvin J, Huang W L, et al. Device-scale CFD modeling of gas-liquid multiphase flow and amine absorption for CO2 capture[J]. Greenhouse Gases: Science and Technology, 2018, 8(3): 603-620. |
117 | Mandal B P, Guha M, Biswas A K, et al. Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions[J]. Chemical Engineering Science, 2001, 56(21/22): 6217-6224. |
118 | Liao C H, Li M H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine+N-methyldiethanolamine[J]. Chemical Engineering Science, 2002, 57(21): 4569-4582. |
119 | Edali M, Aboudheir A, Idem R. Kinetics of carbon dioxide absorption into mixed aqueous solutions of MDEA and MEA using a laminar jet apparatus and a numerically solved 2D absorption rate/kinetics model[J]. International Journal of Greenhouse Gas Control, 2009, 3(5): 550-560. |
120 | Fu K Y, Chen G Y, Sema T, et al. Experimental study on mass transfer and prediction using artificial neural network for CO2 absorption into aqueous DETA[J]. Chemical Engineering Science, 2013, 100: 195-202. |
121 | Zhang X, Fu K Y, Liang Z W, et al. Experimental studies of regeneration heat duty for CO2 desorption from aqueous DETA solution in a randomly packed column[J]. Energy Procedia, 2014, 63: 1497-1503. |
122 | Luo X, Fu K Y, Yang Z, et al. Experimental studies of reboiler heat duty for CO2 desorption from triethylenetetramine (TETA) and triethylenetetramine (TETA) + N-methyldiethanolamine (MDEA)[J]. Industrial & Engineering Chemistry Research, 2015, 54(34): 8554-8560. |
123 | Xu B, Gao H X, Chen M L, et al. Experimental study of regeneration performance of aqueous N, N-diethylethanolamine solution in a column packed with Dixon ring random packing[J]. Industrial & Engineering Chemistry Research, 2016, 55(31): 8519-8526. |
124 | Zeng Q, Guo Y C, Niu Z Q, et al. Mass transfer coefficients for CO2 absorption into aqueous ammonia solution using a packed column[J]. Industrial & Engineering Chemistry Research, 2011, 50(17): 10168-10175. |
125 | Tan L S, Shariff A M, Lau K K, et al. Factors affecting CO2 absorption efficiency in packed column: a review[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 1874-1883. |
126 | Zeng Q, Guo Y C, Niu Z Q, et al. The absorption rate of CO2 by aqueous ammonia in a packed column[J]. Fuel Processing Technology, 2013, 108: 76-81. |
127 | Strigle R F. Random Packings and Packed Towers: Design and Applications[M]. United States: Gulf Publishing Co., 1987. |
128 | Kim I, Svendsen H F. Comparative study of the heats of absorption of post-combustion CO2 absorbents[J]. International Journal of Greenhouse Gas Control, 2011, 5(3): 390-395. |
129 | Chang H, Shih C M. Simulation and optimization for power plant flue gas CO2 absorption-stripping systems[J]. Separation Science and Technology, 2005, 40(4): 877-909. |
130 | Kean J A, Turner H, Price B. Structured packing proven superior for TEG gas drying[J]. Oil & Gas Journal, 1991, 89(38): 41-46. |
131 | Fernandes J, Lisboa P F, Simões P C, et al. Application of CFD in the study of supercritical fluid extraction with structured packing: wet pressure drop calculations[J]. The Journal of Supercritical Fluids, 2009, 50(1): 61-68. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[8] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[9] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[10] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[11] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[12] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[13] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[14] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[15] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 676
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 875
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||