化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1512-1520.DOI: 10.11949/0438-1157.20201804
收稿日期:
2020-12-07
修回日期:
2020-12-15
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
徐斌
基金资助:
Received:
2020-12-07
Revised:
2020-12-15
Online:
2021-03-05
Published:
2021-03-05
Contact:
XU Bin
摘要:
质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)模型中通常包含一些未知的难以确定的参数。为了有效确定这些参数,提出一种基于概率选择模型的改进差分进化算法。该概率选择模型为进化群体中的每个个体分配关于个体优劣性能的选择概率,然后基于该选择概率选择优秀的个体参与变异和交叉操作。为了验证改进算法的有效性,首先将其用于求解标准测试函数,实验结果表明,基于概率选择模型的变异、交叉操作能显著提高差分进化算法的收敛速度和求解精度。然后将改进算法用于质子交换膜燃料电池模型最优参数识别问题,得到的仿真结果和实验测试数据之间具有较高的拟合精度,表明本文改进算法是一种有效的求解系统模型参数优化识别的方法。
中图分类号:
徐斌. 基于改进差分进化算法的质子交换膜燃料电池模型参数优化识别[J]. 化工学报, 2021, 72(3): 1512-1520.
XU Bin. Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm[J]. CIESC Journal, 2021, 72(3): 1512-1520.
函数 | 算法 | 最小值 | 最大值 | 中位值 | 平均值 | 标准差 |
---|---|---|---|---|---|---|
Fsph | DE | 3.024×10-5 | 1.372×10-4 | 6.460×10-5 | 6.897×10-5 | 3.124×10-5 |
IDE | 9.946×10-15 | 3.052×10-13 | 3.161×10-14 | 5.171×10-14 | 5.979×10-14 | |
Fros | DE | 4.392×101 | 6.439×102 | 9.895×101 | 1.707×102 | 1.564×102 |
IDE | 2.521×101 | 1.033×102 | 2.597×101 | 3.816×101 | 2.545×101 | |
Fack | DE | 1.322×10-3 | 2.871×10-3 | 2.188×10-3 | 2.135×10-3 | 4.463×10-4 |
IDE | 3.023×10-8 | 1.217×10-7 | 6.460×10-8 | 6.870×10-8 | 2.363×10-8 | |
Fgwr | DE | 8.075×10-5 | 1.080×10-1 | 7.965×10-4 | 1.221×10-2 | 2.738×10-2 |
IDE | 9.992×10-15 | 9.865×10-3 | 2.450×10-13 | 1.972×10-3 | 3.629×10-3 | |
Fras | DE | 1.373×102 | 1.611×102 | 1.521×102 | 1.526×102 | 7.239×100 |
IDE | 4.724×101 | 1.144×102 | 8.666×101 | 8.472×101 | 1.816×101 | |
Fsch | DE | 2.716×102 | 4.542×103 | 3.022×103 | 2.804×103 | 1.194×103 |
IDE | 7.440×10-10 | 2.369×102 | 1.184×102 | 8.054×101 | 8.863×101 | |
Fsal | DE | 5.187×10-1 | 8.132×10-1 | 7.052×10-1 | 7.142×10-1 | 6.810×10-2 |
IDE | 1.999×10-1 | 2.999×10-1 | 2.825×10-1 | 2.570×10-1 | 4.716×10-2 | |
Fwht | DE | 7.465×102 | 1.008×103 | 8.378×102 | 8.446×102 | 5.373×101 |
IDE | 3.124×102 | 5.419×102 | 4.383×102 | 4.327×102 | 5.412×10-1 |
表1 两种算法求解基准函数的测试结果对比
Table 1 The comparison results of two algorithms over benchmark functions
函数 | 算法 | 最小值 | 最大值 | 中位值 | 平均值 | 标准差 |
---|---|---|---|---|---|---|
Fsph | DE | 3.024×10-5 | 1.372×10-4 | 6.460×10-5 | 6.897×10-5 | 3.124×10-5 |
IDE | 9.946×10-15 | 3.052×10-13 | 3.161×10-14 | 5.171×10-14 | 5.979×10-14 | |
Fros | DE | 4.392×101 | 6.439×102 | 9.895×101 | 1.707×102 | 1.564×102 |
IDE | 2.521×101 | 1.033×102 | 2.597×101 | 3.816×101 | 2.545×101 | |
Fack | DE | 1.322×10-3 | 2.871×10-3 | 2.188×10-3 | 2.135×10-3 | 4.463×10-4 |
IDE | 3.023×10-8 | 1.217×10-7 | 6.460×10-8 | 6.870×10-8 | 2.363×10-8 | |
Fgwr | DE | 8.075×10-5 | 1.080×10-1 | 7.965×10-4 | 1.221×10-2 | 2.738×10-2 |
IDE | 9.992×10-15 | 9.865×10-3 | 2.450×10-13 | 1.972×10-3 | 3.629×10-3 | |
Fras | DE | 1.373×102 | 1.611×102 | 1.521×102 | 1.526×102 | 7.239×100 |
IDE | 4.724×101 | 1.144×102 | 8.666×101 | 8.472×101 | 1.816×101 | |
Fsch | DE | 2.716×102 | 4.542×103 | 3.022×103 | 2.804×103 | 1.194×103 |
IDE | 7.440×10-10 | 2.369×102 | 1.184×102 | 8.054×101 | 8.863×101 | |
Fsal | DE | 5.187×10-1 | 8.132×10-1 | 7.052×10-1 | 7.142×10-1 | 6.810×10-2 |
IDE | 1.999×10-1 | 2.999×10-1 | 2.825×10-1 | 2.570×10-1 | 4.716×10-2 | |
Fwht | DE | 7.465×102 | 1.008×103 | 8.378×102 | 8.446×102 | 5.373×101 |
IDE | 3.124×102 | 5.419×102 | 4.383×102 | 4.327×102 | 5.412×10-1 |
函数 | 算法 | N=50 | N=100 | N=150 | N=200 | N=250 | N=300 | N=350 | N=400 |
---|---|---|---|---|---|---|---|---|---|
Fsph | DE | 6.90×10-5 | 1.96×10-4 | 2.57×10-4 | 2.86×10-4 | 3.35×10-4 | 3.64×10-4 | 3.54×10-4 | 3.92×10-4 |
IDE | 5.17×10-14 | 5.33×10-12 | 2.38×10-11 | 5.29×10-11 | 7.19×10-11 | 1.14×10-10 | 1.44×10-10 | 1.49×10-10 | |
Fros | DE | 1.71×102 | 2.41×102 | 2.32×102 | 2.89×102 | 2.60×102 | 2.56×102 | 2.67×102 | 2.73×102 |
IDE | 3.82×101 | 2.75×101 | 2.73×101 | 2.47×101 | 2.49×101 | 2.48×101 | 2.48×101 | 2.46×101 | |
Fack | DE | 2.14×10-3 | 4.13×10-3 | 4.70×10-3 | 5.15×10-3 | 5.41×10-3 | 5.71×10-3 | 5.63×10-3 | 5.78×10-3 |
IDE | 6.87×10-8 | 5.82×10-7 | 1.27×10-6 | 2.03×10-6 | 2.75×10-6 | 2.99×10-6 | 3.15×10-6 | 3.52×10-6 | |
Fgwr | DE | 1.22×10-2 | 1.71×10-2 | 1.77×10-2 | 1.08×10-2 | 5.41×10-3 | 1.49×10-2 | 6.71×10-3 | 1.01×10-2 |
IDE | 1.97×10-3 | 2.96×10-4 | 2.96×10-4 | 3.11×10-10 | 5.59×10-10 | 5.03×10-10 | 2.96×10-4 | 7.25×10-10 | |
Fras | DE | 1.53×102 | 1.43×102 | 1.47×102 | 1.44×102 | 1.46×102 | 1.43×102 | 1.43×102 | 1.41×102 |
IDE | 8.47×101 | 1.06×102 | 1.10×102 | 1.13×102 | 1.17×102 | 1.16×102 | 1.20×102 | 1.18×102 | |
Fsch | DE | 2.80×103 | 3.75×103 | 4.03×103 | 4.13×103 | 4.20×103 | 4.10×103 | 4.16×103 | 4.25×103 |
IDE | 8.05×101 | 2.11×10-5 | 2.60×10-4 | 2.40×10-4 | 2.17×10-4 | 2.41×10-4 | 2.63×10-4 | 1.72×10-3 | |
Fsal | DE | 7.14×10-1 | 7.90×10-1 | 7.86×10-1 | 7.89×10-1 | 7.95×10-1 | 8.01×10-1 | 7.97×10-1 | 7.96×10-1 |
IDE | 2.57×10-1 | 2.72×10-1 | 2.73×10-1 | 2.82×10-1 | 2.89×10-1 | 2.89×10-1 | 2.96×10-1 | 2.97×10-1 | |
Fwht | DE | 8.45×102 | 1.07×103 | 1.21×103 | 1.45×103 | 1.37×103 | 1.39×103 | 1.52×103 | 1.51×103 |
IDE | 4.33×102 | 5.36×102 | 5.54×102 | 5.81×102 | 5.84×102 | 5.87×102 | 5.80×102 | 5.86×102 |
表2 不同群体规模下测试结果
Table 2 Experimental results with different population size
函数 | 算法 | N=50 | N=100 | N=150 | N=200 | N=250 | N=300 | N=350 | N=400 |
---|---|---|---|---|---|---|---|---|---|
Fsph | DE | 6.90×10-5 | 1.96×10-4 | 2.57×10-4 | 2.86×10-4 | 3.35×10-4 | 3.64×10-4 | 3.54×10-4 | 3.92×10-4 |
IDE | 5.17×10-14 | 5.33×10-12 | 2.38×10-11 | 5.29×10-11 | 7.19×10-11 | 1.14×10-10 | 1.44×10-10 | 1.49×10-10 | |
Fros | DE | 1.71×102 | 2.41×102 | 2.32×102 | 2.89×102 | 2.60×102 | 2.56×102 | 2.67×102 | 2.73×102 |
IDE | 3.82×101 | 2.75×101 | 2.73×101 | 2.47×101 | 2.49×101 | 2.48×101 | 2.48×101 | 2.46×101 | |
Fack | DE | 2.14×10-3 | 4.13×10-3 | 4.70×10-3 | 5.15×10-3 | 5.41×10-3 | 5.71×10-3 | 5.63×10-3 | 5.78×10-3 |
IDE | 6.87×10-8 | 5.82×10-7 | 1.27×10-6 | 2.03×10-6 | 2.75×10-6 | 2.99×10-6 | 3.15×10-6 | 3.52×10-6 | |
Fgwr | DE | 1.22×10-2 | 1.71×10-2 | 1.77×10-2 | 1.08×10-2 | 5.41×10-3 | 1.49×10-2 | 6.71×10-3 | 1.01×10-2 |
IDE | 1.97×10-3 | 2.96×10-4 | 2.96×10-4 | 3.11×10-10 | 5.59×10-10 | 5.03×10-10 | 2.96×10-4 | 7.25×10-10 | |
Fras | DE | 1.53×102 | 1.43×102 | 1.47×102 | 1.44×102 | 1.46×102 | 1.43×102 | 1.43×102 | 1.41×102 |
IDE | 8.47×101 | 1.06×102 | 1.10×102 | 1.13×102 | 1.17×102 | 1.16×102 | 1.20×102 | 1.18×102 | |
Fsch | DE | 2.80×103 | 3.75×103 | 4.03×103 | 4.13×103 | 4.20×103 | 4.10×103 | 4.16×103 | 4.25×103 |
IDE | 8.05×101 | 2.11×10-5 | 2.60×10-4 | 2.40×10-4 | 2.17×10-4 | 2.41×10-4 | 2.63×10-4 | 1.72×10-3 | |
Fsal | DE | 7.14×10-1 | 7.90×10-1 | 7.86×10-1 | 7.89×10-1 | 7.95×10-1 | 8.01×10-1 | 7.97×10-1 | 7.96×10-1 |
IDE | 2.57×10-1 | 2.72×10-1 | 2.73×10-1 | 2.82×10-1 | 2.89×10-1 | 2.89×10-1 | 2.96×10-1 | 2.97×10-1 | |
Fwht | DE | 8.45×102 | 1.07×103 | 1.21×103 | 1.45×103 | 1.37×103 | 1.39×103 | 1.52×103 | 1.51×103 |
IDE | 4.33×102 | 5.36×102 | 5.54×102 | 5.81×102 | 5.84×102 | 5.87×102 | 5.80×102 | 5.86×102 |
噪声 | 算法 | ξ1 | ξ2 | ξ3 | ξ4 | λ | RC | B | f(x) |
---|---|---|---|---|---|---|---|---|---|
无噪声 | RCGA | -0.938096 | 0.00316553 | 8.805×10-5 | -1.75×10-4 | 20.18 | 0.000596 | 0.02575428 | 7.2056×10-4 |
PSO | -0.853200 | 0.00249636 | 4.716×10-5 | -9.54×10-4 | 10.00 | 0.000100 | 0.01360000 | 8.0614×10-2 | |
ABC | -0.996693 | 0.00333755 | 8.716×10-5 | -1.91×10-4 | 17.52 | 0.000212 | 0.01771729 | 4.7300×10-3 | |
DE | -1.090382 | 0.00297845 | 3.837×10-5 | -1.81×10-4 | 22.17 | 0.000468 | 0.02667588 | 3.3816×10-4 | |
IDE | -0.901873 | 0.00295771 | 7.894×10-5 | -1.87×10-4 | 22.65 | 0.000184 | 0.02832236 | 1.4398×10-4 | |
低噪声 | RCGA | -1.132093 | 0.00368763 | 8.541×10-5 | -1.79×10-4 | 23.98 | 0.000575 | 0.02942129 | 1.7529×10-2 |
PSO | -0.948038 | 0.00159462 | 4.970×10-5 | -1.55×10-4 | 21.41 | 0.000127 | 0.02989030 | 1.6181×10-1 | |
ABC | -0.907133 | 0.00285576 | 6.745×10-5 | -1.92×10-4 | 17.85 | 0.000608 | 0.01716988 | 2.5533×10-2 | |
DE | -1.127019 | 0.00366308 | 8.368×10-5 | -1.88×10-4 | 21.43 | 0.000144 | 0.02802703 | 1.7573×10-2 | |
IDE | -1.036553 | 0.00317264 | 6.538×10-5 | -1.83×10-4 | 23.35 | 0.000484 | 0.02817283 | 1.7343×10-2 | |
高噪声 | RCGA | -0.908332 | 0.00261682 | 4.761×10-5 | -2.12×10-4 | 24.00 | 0.000482 | 0.01833886 | 9.4149×10-2 |
PSO | -1.186572 | 0.00356386 | 6.002×10-5 | -1.57×10-4 | 10.23 | 0.000672 | 0.01417309 | 2.3739×10-1 | |
ABC | -1.122471 | 0.00318047 | 4.510×10-5 | -2.01×10-4 | 20.03 | 0.000730 | 0.01376492 | 9.6348×10-2 | |
DE | -1.087087 | 0.00304861 | 4.168×10-5 | -2.15×10-4 | 23.05 | 0.000182 | 0.01858317 | 9.4147×10-2 | |
IDE | -1.022205 | 0.00294057 | 4.790×10-5 | -2.14×10-4 | 23.69 | 0.000211 | 0.01950286 | 9.4140×10-2 |
表3 五种算法在三种情况下求解最优结果比较
Table 3 The best results of five algorithms under three different conditions
噪声 | 算法 | ξ1 | ξ2 | ξ3 | ξ4 | λ | RC | B | f(x) |
---|---|---|---|---|---|---|---|---|---|
无噪声 | RCGA | -0.938096 | 0.00316553 | 8.805×10-5 | -1.75×10-4 | 20.18 | 0.000596 | 0.02575428 | 7.2056×10-4 |
PSO | -0.853200 | 0.00249636 | 4.716×10-5 | -9.54×10-4 | 10.00 | 0.000100 | 0.01360000 | 8.0614×10-2 | |
ABC | -0.996693 | 0.00333755 | 8.716×10-5 | -1.91×10-4 | 17.52 | 0.000212 | 0.01771729 | 4.7300×10-3 | |
DE | -1.090382 | 0.00297845 | 3.837×10-5 | -1.81×10-4 | 22.17 | 0.000468 | 0.02667588 | 3.3816×10-4 | |
IDE | -0.901873 | 0.00295771 | 7.894×10-5 | -1.87×10-4 | 22.65 | 0.000184 | 0.02832236 | 1.4398×10-4 | |
低噪声 | RCGA | -1.132093 | 0.00368763 | 8.541×10-5 | -1.79×10-4 | 23.98 | 0.000575 | 0.02942129 | 1.7529×10-2 |
PSO | -0.948038 | 0.00159462 | 4.970×10-5 | -1.55×10-4 | 21.41 | 0.000127 | 0.02989030 | 1.6181×10-1 | |
ABC | -0.907133 | 0.00285576 | 6.745×10-5 | -1.92×10-4 | 17.85 | 0.000608 | 0.01716988 | 2.5533×10-2 | |
DE | -1.127019 | 0.00366308 | 8.368×10-5 | -1.88×10-4 | 21.43 | 0.000144 | 0.02802703 | 1.7573×10-2 | |
IDE | -1.036553 | 0.00317264 | 6.538×10-5 | -1.83×10-4 | 23.35 | 0.000484 | 0.02817283 | 1.7343×10-2 | |
高噪声 | RCGA | -0.908332 | 0.00261682 | 4.761×10-5 | -2.12×10-4 | 24.00 | 0.000482 | 0.01833886 | 9.4149×10-2 |
PSO | -1.186572 | 0.00356386 | 6.002×10-5 | -1.57×10-4 | 10.23 | 0.000672 | 0.01417309 | 2.3739×10-1 | |
ABC | -1.122471 | 0.00318047 | 4.510×10-5 | -2.01×10-4 | 20.03 | 0.000730 | 0.01376492 | 9.6348×10-2 | |
DE | -1.087087 | 0.00304861 | 4.168×10-5 | -2.15×10-4 | 23.05 | 0.000182 | 0.01858317 | 9.4147×10-2 | |
IDE | -1.022205 | 0.00294057 | 4.790×10-5 | -2.14×10-4 | 23.69 | 0.000211 | 0.01950286 | 9.4140×10-2 |
1 | Larminie J, Dicks A. Fuel Cell Systems Explained [M]. West Sussex, England: John Wiley& Sons, 2003. |
2 | Mock P, Schmid S A. Fuel cells for automotive powertrains—a techno-economic assessment[J]. Journal of Power Sources, 2009, 190(1): 133-140. |
3 | Jia J, Li Q, Wang Y, et al. Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell[J]. IEEE Transactions on Energy Conversion, 2009, 24(1): 283-291. |
4 | 彭跃进, 彭赟, 李伦, 等. 质子交换膜燃料电池电源系统停机特性及控制策略[J]. 化工学报, 2015, 66(3): 1178-1184. |
Peng Y J, Peng Y, Li L, et al. Shutdown process and shutdown strategy of PEMFC power system[J]. CIESC Journal, 2015, 66(3): 1178-1184. | |
5 | Correa J M, Farret F A, Popov V A, et al. Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells[J]. IEEE Transactions on Energy Conversion, 2005, 20(1): 211-218. |
6 | Mo Z, Zhu X, Wei L, et al. Parameter optimization for a PEMFC model with a hybrid genetic algorithm[J]. International Journal of Energy Research, 2006, 30(8): 585-597. |
7 | Yang B, Wang J, Yu L, et al. A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms[J]. Journal of Cleaner Production, 2020, 265: 121660. |
8 | Priya K, Sathishkumar K, Rajasekar N. A comprehensive review on parameter estimation techniques for proton exchange membrane fuel cell modelling[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 121-144. |
9 | Mohamed I, Jenkins N. Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms[J]. Journal of Power Sources, 2004, 131(1/2): 142-146. |
10 | Ye M, Wang X, Xu Y. Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization[J]. International Journal of Hydrogen Energy, 2009, 34(2): 981-989. |
11 | 李奇, 陈维荣, 刘述奎, 等. 基于自适应聚焦粒子群算法的质子交换膜燃料电池机理建模[J]. 中国电机工程学报, 2009, 29(20): 119-124. |
Li Q, Chen W R, Liu S K, et al. Mechanism modeling of proton exchange membrane fuel cell based on adaptive focusing particle swarm optimization [J]. Proceedings of the CSEE, 2009, 29(20): 119-124. | |
12 | Sun Z, Wang N, Bi Y, et al. Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm[J]. Energy, 2015, 90: 1334-1341. |
13 | Gong W, Cai Z. Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution[J]. Energy, 2013, 59: 356-364. |
14 | Chakraborty U K, Abbott T E, Das S K. PEM fuel cell modeling using differential evolution[J]. Energy, 2012, 40(1): 387–399. |
15 | Zhang W, Wang N, Yang S. Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5796-5806. |
16 | Yang S, Wang N. A novel P systems-based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8465-8476. |
17 | Askarzadeh A, Rezazadeh A. An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3473-3480. |
18 | Price K, Storn R. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. |
19 | Dragoi E N, Curteanu S. The use of differential evolution algorithm for solving chemical engineering problems[J]. Reviews in Chemical Engineering, 2016, 32(2): 149-180. |
20 | 徐斌, 陈旭, 陶莉莉, 等. 基于适应策略差分进化算法的化工反应动力学参数估值[J]. 化工进展, 2018, 37(6): 2077-2083. |
Xu B, Chen X, Tao L L, et al. Differential evolution using adaptive strategy for parameter estimation of chemical reaction kinetics[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2077-2083. | |
21 | 徐斌, 陶莉莉, 程武山. 一种自适应多策略差分进化算法及其应用[J]. 化工学报, 2016, 67(12): 5190-5198. |
Xu B, Tao L L, Cheng W S. A self-adaptive differential evolution algorithm with multiple strategies and its application[J]. CIESC Journal, 2016, 67(12): 5190-5198. | |
22 | 曹蓓, 陈庆达, 丁进良. 多收率约束的催化裂化反再系统改进差分进化操作优化[J]. 控制理论与应用, 2019, 36(8): 1207-1216. |
Cao B, Chen Q D, Ding J L. Operational optimization of fluid catalytic cracking reaction-regeneration system with multi-yield constraints using improved differential evolution algorithm[J]. Control Theory & Applications, 2019, 36(8): 1207-1216. | |
23 | Bilal, Pant M, Zaheer H, et al. Differential evolution: a review of more than two decades of research[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103479. |
24 | Zhang J, Sanderson A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958. |
25 | Das S, Abraham A, Chakraborty U K, et al. Differential evolution using a neighborhood-based mutation operator[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 526-553. |
26 | Epitropakis M G, Tasoulis D K, Pavlidis N G, et al. Enhancing differential evolution utilizing proximity-based mutation operators[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 99-119. |
27 | Gong W, Cai Z. Differential evolution with ranking-based mutation operators[J]. IEEE Transactions on Cybernetics, 2013, 43(6): 2066-2081. |
28 |
赵杨, 熊伟丽. 基于多策略自适应差分进化算法的污水处理过程多目标优化控制[J]. 化工学报, 2021, 72(4).doi:10.11949/0438-1157.20201068.
DOI |
Zhao Y, Xiong W L. Multi-objective optimization control of wastewater treatment process based on multi-strategy adaptive differential evolution algorithm[J]. CIESC Journal, , 2021, 72(4).doi:10.11949/0438-1157.20201068.
DOI |
|
29 | Chen X, Xu B, Mei C L, et al. Teaching-learning-based artificial bee colony for solar photovoltaic parameter estimation[J]. Applied Energy, 2018, 212: 1578-1588. |
30 | Hu C P, Yan X F. An immune self-adaptive differential evolution algorithm with application to estimate kinetic parameters for homogeneous mercury oxidation[J]. Chinese Journal of Chemical Engineering, 2009, 17(2): 232-240. |
31 | Noman N, Iba H. Accelerating differential evolution using an adaptive local search[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 107-125. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[4] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[7] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[12] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[13] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||