化工学报 ›› 2022, Vol. 73 ›› Issue (1): 73-84.DOI: 10.11949/0438-1157.20210866
收稿日期:
2021-06-28
修回日期:
2021-11-02
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
朱庆山
作者简介:
向茂乔(1987—),男,博士,青年研究员,基金资助:
Maoqiao XIANG1(),Yuqi GENG1,2,Qingshan ZHU1,2()
Received:
2021-06-28
Revised:
2021-11-02
Online:
2022-01-05
Published:
2022-01-18
Contact:
Qingshan ZHU
摘要:
氮化硅(Si3N4)具有优异的物化性能,在国防、电子信息等关键领域都占据重要的地位。高质量粉体是制备高性能Si3N4陶瓷的首要前提。通常高质量Si3N4粉体需要满足粒径细、分布窄、α相含量高、杂质含量低等条件。基于合成反应体系综述了当前国内外制备Si3N4粉体的方法,着重从强化传热与传质角度介绍了改善粉体质量的研究进展,并介绍了当前工业生产现状,展望了高质量Si3N4粉体制备技术的发展趋势和方向。
中图分类号:
向茂乔, 耿玉琦, 朱庆山. 氮化硅粉体制备技术及粉体质量研究进展[J]. 化工学报, 2022, 73(1): 73-84.
Maoqiao XIANG, Yuqi GENG, Qingshan ZHU. Research advances in preparation technology and quality of silicon nitride powder[J]. CIESC Journal, 2022, 73(1): 73-84.
图1 SiO2-C-N2体系在不同温度和分压下的优势区域图(采用HSC 6.0 热力学分析软件计算)
Fig.1 Predominance area diagram of the SiO2-C-N2 system under different temperature and partial pressure (calculated by HSC 6.0 thermodynamic analysis software)
企业 | α相/%(质量) | C/%(质量) | O/%(质量) | Fe/%(质量) | Al/%(质量) | Mg/%(质量) | Ca/%(质量) |
---|---|---|---|---|---|---|---|
日本东芝 | 约96 | 0.09~0.8 | 0.9~3.5 | 约0.0044 | 约0.0006 | 约0.0002 | 0.0018~0.0052 |
日本住友 | 约99 | 0.6~1.3 | 1.0~4.1 | 约0.003 | 约0.0022 | 约0.0009 | 约0.002 |
臻璟新材 | 约95.3 | 约0.9 | 约1.5 | <0.01 | <0.01 | <0.01 | <0.01 |
凯新特材 | 约90 | 0.2~3.8 | 约1.3 | <0.01 | <0.01 | <0.01 | <0.01 |
表1 国内外采用碳热氮化SiO2生产Si3N4粉体质量
Table 1 The quality of Si3N4 powders synthesized by carbothermal nitriding of SiO2 in the domestic and overseas
企业 | α相/%(质量) | C/%(质量) | O/%(质量) | Fe/%(质量) | Al/%(质量) | Mg/%(质量) | Ca/%(质量) |
---|---|---|---|---|---|---|---|
日本东芝 | 约96 | 0.09~0.8 | 0.9~3.5 | 约0.0044 | 约0.0006 | 约0.0002 | 0.0018~0.0052 |
日本住友 | 约99 | 0.6~1.3 | 1.0~4.1 | 约0.003 | 约0.0022 | 约0.0009 | 约0.002 |
臻璟新材 | 约95.3 | 约0.9 | 约1.5 | <0.01 | <0.01 | <0.01 | <0.01 |
凯新特材 | 约90 | 0.2~3.8 | 约1.3 | <0.01 | <0.01 | <0.01 | <0.01 |
取向关系 | 失配应变/% |
---|---|
α-Si3N4 Si | |
(2 | 1.8 |
(0 3 | 1.8 |
(2 | 2.2 |
(3 | -4.1 |
(0 0 0 2) // (1 1 1) | 10.8 |
表2 Si和α-Si3N4不同取向时产生的应变[35]
Table 2 Misfit strain between Si and α-Si3N4 with different orientation[35]
取向关系 | 失配应变/% |
---|---|
α-Si3N4 Si | |
(2 | 1.8 |
(0 3 | 1.8 |
(2 | 2.2 |
(3 | -4.1 |
(0 0 0 2) // (1 1 1) | 10.8 |
企业 | α相/%(质量) | Si/%(质量) | O/%(质量) | Fe/%(质量) | Al/%(质量) | Ca/%(质量) |
---|---|---|---|---|---|---|
H?gan?s(H.C.Starck) | 90 | ≤0.9 | 1.3 | 0.0005 | 0.001 | 0.0005 |
ALZChem | 93 | ≤0.2 | ≤1.0 | 0.0015 | 0.0001 | 0.0008 |
烟台同立高科 | 90 | ≤0.1 | ≤1.6 | 0.0002 | 0.0004 | 0.0003 |
埃克诺新材料 | 92 | 0.1 | 1.3 | 0.0005 | 0.0005 | 0.0005 |
河北高富 | 80 | 0.1 | 1.0 | 0.01 | 0.01 | 0.01 |
淄博恒世科技 | 90 | 0.1 | ≤0.6 | 0.0003 | 0.0003 | 0.0003 |
青岛瓷兴 | >90 | 0.2 | ≤1.5 | ≤0.0005 | ≤0.0005 | ≤0.0005 |
中材高新 | 93 | 0.2 | ≤1.5 | ≤0.00002 | <0.01 | <0.01 |
德盛特种陶瓷 | 90 | 0.025 | 1.2 | 0.002 | — | 0.001 |
北京中联阳光 | 90 | 0.15 | ≤1.0 | 0.001 | 0.0005 | 0.0005 |
泰晟新材料 | 92 | 1.2 | 1.5 | <0.01 | 0.003 | 0.001 |
安赛美精细陶瓷 | 93.5 | 0.5 | 1.5 | 0.06 | 0.01 | 0.008 |
表3 国内外采用自蔓延燃烧技术生产Si3N4粉体质量
Table 3 The quality of Si3N4 powders synthesized by self-propagating combustion technology in the domestic and overseas
企业 | α相/%(质量) | Si/%(质量) | O/%(质量) | Fe/%(质量) | Al/%(质量) | Ca/%(质量) |
---|---|---|---|---|---|---|
H?gan?s(H.C.Starck) | 90 | ≤0.9 | 1.3 | 0.0005 | 0.001 | 0.0005 |
ALZChem | 93 | ≤0.2 | ≤1.0 | 0.0015 | 0.0001 | 0.0008 |
烟台同立高科 | 90 | ≤0.1 | ≤1.6 | 0.0002 | 0.0004 | 0.0003 |
埃克诺新材料 | 92 | 0.1 | 1.3 | 0.0005 | 0.0005 | 0.0005 |
河北高富 | 80 | 0.1 | 1.0 | 0.01 | 0.01 | 0.01 |
淄博恒世科技 | 90 | 0.1 | ≤0.6 | 0.0003 | 0.0003 | 0.0003 |
青岛瓷兴 | >90 | 0.2 | ≤1.5 | ≤0.0005 | ≤0.0005 | ≤0.0005 |
中材高新 | 93 | 0.2 | ≤1.5 | ≤0.00002 | <0.01 | <0.01 |
德盛特种陶瓷 | 90 | 0.025 | 1.2 | 0.002 | — | 0.001 |
北京中联阳光 | 90 | 0.15 | ≤1.0 | 0.001 | 0.0005 | 0.0005 |
泰晟新材料 | 92 | 1.2 | 1.5 | <0.01 | 0.003 | 0.001 |
安赛美精细陶瓷 | 93.5 | 0.5 | 1.5 | 0.06 | 0.01 | 0.008 |
1 | Iijima M, Hasegawa K, Tatami J. Nonaqueous gel casting using multicomponent concentrated slurries through Michael additive reaction for fabricating silicon nitride dense ceramics[J]. Advanced Powder Technology, 2021, 32(2): 472-479. |
2 | Frank L, Riley F L. Silicon nitride and related materials[J]. Journal of the American Ceramic Society, 2000, 83(2): 245-265. |
3 | Chen F, Shen Q, Zhang L M. Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure[J]. Progress In Electromagnetics Research, 2010, 105: 445-461. |
4 | Zhang X Y, Huo W L, Qi F, et al. Ultralight silicon nitride ceramic foams from foams stabilized by partially hydrophobic particles[J]. Journal of the American Ceramic Society, 2016, 99(9): 2920-2926. |
5 | 李贵佳, 孙峰. 利用国外专利技术, 解决国内氮化硅陶瓷轴承球产业化问题[J]. 中国陶瓷, 2015, 51(10): 43-47. |
Li G J, Sun F. To solve the domestic industrialization problem of silicon nitride ceramic bearing ball by means of foreign patent technology[J]. China Ceramics, 2015, 51(10): 43-47. | |
6 | 吴承伟, 张伟, 李东炬. 超精密高性能氮化硅轴承研究现状与应用[J]. 精密制造与自动化, 2020, 221(1): 1-3. |
Wu C W, Zhang W, Li D J. Current situation and application of research on super-precision high-performance silicon nitride bearings[J]. Precise Manufacturing & Automation, 2020, 11(1): 1-3. | |
7 | Hu F, Xie Z P, Zhang J, et al. Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics[J]. Rare Metals, 2020, 39(5): 463-478. |
8 | 郑彧, 童亚琦, 张伟儒. 高导热氮化硅陶瓷基板材料研究现状[J]. 真空电子技术, 2018, 335(4): 13-17. |
Zheng Y, Tong Y Q, Zhang W R. Research on high thermal conductivity silicon nitride ceramic substrate materials[J]. Vacuum Electronics, 2018, 335(4): 13-17. | |
9 | 李少鹏. 新一代IGBT模块用高可靠氮化硅陶瓷覆铜基板研究进展[J]. 电子工业专用设备, 2019, 48(1): 1-7. |
Li S P. Research and development of bonding copper to Si3N4 ceramic substrates used in IGBT module[J]. Equipment for Electronic Products Manufacturing, 2019, 48(1): 1-7. | |
10 | 吴庆文, 胡丰, 谢志鹏. 高性能氮化硅陶瓷的制备与应用新进展[J]. 陶瓷学报, 2018, 39(1): 13-19. |
Wu Q W, Hu F, Xie Z P. New progress in the preparation and application of high performance silicon nitride ceramics[J]. Journal of Ceramics, 2018, 39(1): 13-19. | |
11 | Takeshi Y, Michio H, Shinsuke J. Silicon nitride powder, silicon nitride sintered body and cricut substrate, and production method for said silicon nitride powder: US10399854B2[P]. 2019-09-03. |
12 | Shibata K, Ohmaru T, Yamao T, et al. Silicon nitride powder production method, silicon nitride powder, silicon nitride sintered body and circuit substrate using same: US9085462B2[P], 2015-07-21. |
13 | 万小涵, 张广清, Ostroviski Oleg. 碳热还原/氮化合成氮化硅工艺中碳化硅生成的分析[J]. 云南冶金, 2015, 44(3): 47-49, 73. |
Wan X H, Zhang G Q, Ostroviski O. Analysis on silicon carbide formation in the process of carbothermal reduction/nitration synthesis of silicon nitride[J]. Yunnan Metallurgy, 2015, 44(3): 47-49, 73. | |
14 | Ortega A, Alcalá M D, Real C, Carbothermal synthesis of silicon nitride (Si3N4): Kinetics and diffusion mechanism[J]. Journal of Materials Processing Technology, 2008, 195: 224-231. |
15 | Vlasova M V, Bartnitskaya T S, Sukhikh L L, et al. Mechanism of Si3N4 nucleation during carbothermal reduction of silica[J]. Journal of Materials Science, 1995, 30: 5263-5271. |
16 | Ma B, Huang Z H, Mei L F, et al. Preparation of Si3N4 form diatomite via a carbothermal reduction-nitridation process[J]. The Minerals, Metals & Materials Society, 2016, 68(5): 1456-1464. |
17 | Weimer A W, Eisman G A, Susnitzky D W, et al. Mechanism and kinetics of the carbothermal nitridation synthesis of α-silicon nitride[J]. Journal of the American Ceramic Society, 1997, 80(11): 2853-2863. |
18 | Chen K, Huang Z H, Liu Y, et al. Synthesis of β-Si3N4 powder from quartz via carbothermal reduction nitridation[J]. Powder Technology, 2013, 235: 728-734. |
19 | Ishii T, Imai I, Sano A, et al. Method for making silicon nitride powder: US4986972[P]. 1991-01-22. |
20 | Inoue H, Komeya K, Tsuge A, et al. Process for preparing silicon nitride powder: US4514370[P]. 1985-04-30. |
21 | Chung S L, Chang C W. Carbothermal reduction and nitridation synthesis of silicon nitride by using solution combustion synthesized precursors[J]. Journal of Materials Science, 2009, 44(14): 3784-3792. |
22 | Ghosh Chaudhuri M, Ahmadullah S, Dey R, et al. Novel technique for synthesis of silicon nitride nanowires[J]. Advances in Applied Ceramics, 2011, 110(4): 211-214. |
23 | Schonfelder L, Franz G. Process for the preparation of silicon nitride low in carbon content: US4798714[P]. 1989-01-17. |
24 | Jennings H M, On reactions between silicon and nitrogen[J]. Journal of Materials Science, 1983, 18(4): 951-967. |
25 | Atkinson A, Leatt P J, Moulson A J, et al. A mechanism for the nitridation of silicon powder compacts[J]. Journal of Materials Science, 1974, 9(6): 981-984. |
26 | Atkinson A, Moulson A J, Roberts E W, et al. Nitridation of high-purity silicon[J]. Journal of the American Ceramic Society, 1976, 59(7/8): 285-289. |
27 | Barsoum M, Kangutkar P, Koczak M J. Nitridation kinetics and thermodynamics of silicon powder compacts [J]. Journal of the American Ceramic Society, 1991, 74(6): 1248-1253. |
28 | Sheldon B W, Haggerty J S. The formation of reaction bonded Si3N4 at low temperatures and in short times[C]//A Collection of Papers Presented at the 13th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1989, 10: 784-793. |
29 | Sheldon B W, Haggerty J S. The nitridation of high purity, laser-synthesized silicon powder to form reaction bonded silicon nitride[C]//Proceedings of the 12th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings. Hoboken, NJ, USA: John Wiley & Sons, Inc.,1988: 1061-1071. |
30 | Moulson A J. Reaction-bonded silicon nitride: its formation and properties[J]. Journal of Materials Science, 1979, 14(5): 1017-1051. |
31 | Inomata Y, Uemura Y. Nitridation kinetics of silicon powder[J]. Journal of the Ceramic Association, Japan, 1975, 83(957): 244-248. |
32 | Jennings H M, Dalgleish B J, Pratt P L. Reactions between silicon and nitrogen [J]. Journal of Materials Science, 1988, 23(7): 2573-2583. |
33 | Maalmi M, Varma A. Intrinsic nitridation kinetics of high-purity silicon powder[J]. AIChE Journal, 1996, 42(12): 3477-3483. |
34 | Chang F W, Liou T H, Tsai F M. The nitridation kinetics of silicon powder compacts[J]. Thermochimica Acta, 2000, 354(1/2): 71-80. |
35 | Koike J, Kimura S. Mechanism of nitridation of silicon powder in a fluidized-bed reactor[J]. Journal of the American Ceramic Society, 1996, 79(2): 365-370. |
36 | Li W B, Lei B Q, Lindbäck T, et al. Stresses developed in reaction-bonded ceramics[J]. Journal of the European Ceramic Society, 1999, 19(3): 277-283 |
37 | Wang H B, Han J C, Du S Y. Effect of nitrogen pressure and oxygen-containing impurities on self-propagating high temperature synthesis of Si3N4[J]. Journal of the European Ceramic Society, 2001, 21(3): 297-302. |
38 | 杨福明, 王立, 尹少武, 等. 硅粉常压直接氮化过程的非催化气固反应模型[J]. 北京科技大学学报, 2013, 35(6): 785-792. |
Yang F M, Wang L, Yin S W, et al. Noncatalytic gas-solid reaction model for directly nitridizing silicon powder under atmospheric pressure[J]. Journal of University of Science and Technology Beijing, 2013, 35(6): 785-792. | |
39 | Duan S C, Ma J J, Guo H J, et al. Thermodynamic analysis and kinetics mechanism for direct nitridation reaction[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 14-21. |
40 | 杨春. 流化床直接氮化硅粉技术的研究现状及发展方向[J]. 能源工程, 2015, 2: 21-26. |
Yang C. Development and research status of preparation of silicon nitride powder by direction nitridation of silicon in fluidized bed[J]. Energy Engineering, 2015, 2: 21-26. | |
41 | Li J T, Tian S Y, Chen K X. Investigation of the on-line industrial production of Si3N4 by combustion synthesis[J]. Journal of Ceramic Society of Japan, 2004, 112(5): S1-S5. |
42 | Ge Y, Wang Q, Cui W, et al. Crystal growth in the combustion synthesis of α-Si3N4 using Si with different particle sizes[J]. Journal of the American Ceramic Society, 2015, 98(10): 3398-3403. |
43 | Ge Y, Cui W, Wang Q, et al. Microstructure and thermo-kinetics analysis in combustion synthesis of Si3N4 with high α-phase content[J]. Journal of the American Ceramic Society, 2015, 98(1): 263-268. |
44 | Li J T, Mei L, Yang Y, et al. Combustion synthesis of Si3N4 by selective reaction of silicon with nitrogen in air[J]. Journal of the American Ceramic Society, 2009, 92(3): 636-640. |
45 | Kim M, Park J, Lee H W, et al. A cyclic process for the nitridation of Si powder[J]. Materials Science and Engineering A, 2005, 408(1/2): 85-91. |
46 | 张宝林, 庄汉锐, 符锡仁. 硅粉在高压氮气中自蔓延燃烧合成氮化硅的反应机理[J]. 无机材料学报, 1993, 4(8): 433-440. |
Zhang B L, Zhuan H R, Fu X R. A Mechanism for self-propagating combustion synthesis of Si3N4 under pressurized nitrogen[J]. Journal of Inorganic Materials, 1993, 4(8): 433-440. | |
47 | Hirao K, Miyamoto Y, Koizumi M. Synthesis of silicon nitride by a combustion reaction under high nitrogen pressure[J]. Journal of the American Ceramic Society, 1986, 69(4): C-60. |
48 | Hirao K, Miyamoto Y, Koizumi M. Combustion reaction characteristics in the nitridation of silicon[J]. Advanced Ceramic Materials, 1987, 2(4): 780-783. |
49 | Singh S, Godkhindi M M, Krishnarao R V, et al. Effect of mechanical activation on synthesis of ultrafine Si3N4-MoSi2in situ composites[J]. Materials Science and Engineering: A, 2004, 382(1/2): 321-327. |
50 | Jin H B, Yang Y, Chen Y X, et al. Mechanochemical-activation-assisted combustion synthesis of α-Si3N4[J]. Journal of the American Ceramic Society, 2006, 89(3): 1099-1102. |
51 | Jin H B, Cao M S, Chen Y X, et al. The influence of mechanochemical activation on combustion synthesis of Si3N4[J]. Ceramics International, 2008, 34(5): 1267-1271. |
52 | 曹永革, 葛昌纯, 周张健. 初始硅粉粒度对自蔓延高温合成氮化硅的影响[J]. 硅酸盐学报, 1998, 26(5): 4-10. |
Cao Y G, Ge C C, Zhou Z J. Effect of Si particle size on SHS Si3N4[J]. Journal of the Chinese Ceramic Society, 1998, 26(5): 4-10. | |
53 | 任克刚, 陈克新, 金海波. 活化燃烧合成氮化硅陶瓷粉体[J]. 稀有金属材料与工程, 2005, 34(z1): 208-210. |
Ren K G, Chen K X, Jin H B. Combustion synthesis Si3N4 powders by using activation process[J]. Rare Metal Materials and Engineering, 2005, 34(z1): 208-210. | |
54 | 尹少武, 王立, 刘传平, 等. 硅粉常压直接氮化制备氮化硅粉的研究[J].硅酸盐通报, 2008, 27(2): 230-235. |
Yin S W, Wang L, Liu C P, et al. The study on the preparation of silicon nitride powders by direct nitridation at normal pressure[J]. Bulletin of the Chinese Ceramics Society, 2008, 27(2): 230-235. | |
55 | Yeh C L, Liu E W. Effects of Si3N4 addition on formation of aluminum nitride by self-propagating combustion synthesis[J]. Journal of Alloys and Compounds, 2007, 433: 147-153. |
56 | Yang Y, Chen Y X, Lin Z M, et al. Synthesis of alpha-Si3N4 using low-α-phase Si3N4 diluent by the seeding technique[J]. Scripta Materialia, 2007, 56(5): 401-404. |
57 | Cano I G, Borovinskaya I P, Rodriguez M A, et al. Effect of dilution and porosity on self-propagating high-temperature synthesis of silicon nitride[J]. Journal of the American Ceramic Society, 2002, 85(9): 2209-2211. |
58 | Cano I G, Pérez Baelo S, Rodrı́guez M A, et al. Self-propagating high temperature-synthesis of Si3N4: role of ammonium salt addition[J]. Journal of the European Ceramic Society, 2001, 21(3): 291-295. |
59 | Ge C C, Wang F, Shen W P. New progress on SHS of silicon nitride with high α-phase content[J]. Materials Science Forum, 2005, 475: 1599-1604. |
60 | Komeya K, Inoue Y H, Ohta T, et al. Method of making alpha type silicon nitride powder: US4117095[P]. 1978-09-26. |
61 | Jiang J X. A new synthesis method of α-silicon nitride powder-reductive combustion synthesis from silicon and silicon dioxide[J]. Journal of the American Ceramic Society, 2009, 92 (12): 3095-3097. |
62 | Fukuoka H, Shimizu M, Ochiai H, et al. Preparation of silicon nitride powder by partially nitriding in a fluidized bed and then completing nitridation in a moving bed: US5232677[P]. 1993-08-03. |
63 | Fukuoka H, Watanabe M, Konya Y, et al. Preparation of high alpha-type silicon nitride powder: US5456896[P]. 1995-08-10. |
64 | Fukuoka H, Konya Y, Fukuhira M. Continuous preparation of silicon nitride powder: US5817285[P]. 1998-10-06. |
65 | Liu Y D, Kimura S. Fluidized-bed nitridation of fine silicon powder[J]. Powder Technology, 1999, 106(3): 160-167. |
66 | Yang F M, Wang L, Yin S W, et al. Experimental study on the entrainment characteristics of ultrafine powder in a fluidized bed with vibrator and agitator[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1359-1364. |
67 | 尹少武, 王立, 童莉葛, 等. 基于流态化技术硅粉直接氮化制备氮化硅粉[J]. 北京化工大学学报(自然科学版), 2008, 35(1): 70-74. |
Yi S W, Wang L, Tong L G, et al. Preparation of silicon nitride powder by a direct nitridation process based on fluidization technology[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2008, 35(1): 70-74. | |
68 | 尹少武, 王立, 孙淑凤, 等. 悬浮床氮化硅合成热过程的实验研究与数值模拟[J]. 北京科技大学学报, 2008, 30(10): 1169-1173. |
Yin S W, Wang L, Sun S F, et al. Experiment research and numerical simulation of thermal process in a suspended bed for Si3N4 synthesis[J]. Journal of University Science and Technology Beijing, 2008, 30(10): 1169-1173. | |
69 | 陈俊, 叶旭初, 宋涛, 等. 流态化合成氮化硅的鼓泡床冷模试验与CFD模拟[J]. 南京工业大学学报(自然科学版), 2005, 27(1):57-61. |
Chen J, Ye X C, Song T, et al. The fluid-dynamic study and CFD simulation of bubbling fluidized bed for Si3N4 synthesis[J]. Journal of Nanjing University of Technology, 2005, 27(1): 57-61. | |
70 | 张林进, 叶旭初, 吕秀玮. 高温流态化合成氮化硅的实验研究[J]. 材料工程, 2009, 11: 1-3. |
Zhang L J, Ye X C, Lv X W. Experimental study on preparation of silicon nitride by high-temperature fluidization[J]. Journal of Materials Engineering, 2009, 11: 1-3. | |
71 | 雷超, 魏飞. 单晶α-Si3N4纳米线宏量制备研究[J]. 无机材料学报, 2019, 34(6): 667-672. |
Lei C, Wei F. Mass production of α-silicon nitride single-crystalline nanowires[J]. Journal of Inorganic Materials, 2019, 34(6): 667-672. | |
72 | Lee W Y, Strife J R, Veltri R D. Low-pressure chemical vapor deposition of alpha-Si3N4 from SiF4 and NH3: kinetic characteristics[J]. Journal of the American Ceramic Society, 1992, 75(8): 2200-2206. |
73 | Kijima K, Setaka N, Tanaka H. Preparation of silicon nitride single crystals by chemical vapor deposition[J]. Journal of Crystal Growth, 1974, 24/25: 183-187. |
74 | Zhu H J, Li C Z, Chen H, et al. Preparation of ultrafine Si3N4 powder by chemical vapor deposition[J]. Journal of Inorganic Materials, 1995, 10(1): 43-48. |
75 | Prochazka S, Greskovich C D. Preparation of silicon nitride powder: US4122155[P]. 1978-08-24. |
76 | 王勇, 沃银花, 姚奎鸿, 等. 流态床CVD法纳米氮化硅粉体的制备[J]. 无机材料学报, 2006, 21(1): 41-45. |
Wang Y, Wo Y H, Yao K H, et al. CVD synthesis of silicon nitride(SiN) nanopowders in a novel two-stage fluidized bed reactor[J]. Journal of Inorganic Materials, 2006, 21(1): 41-45. | |
77 | 王勇, 周俊, 汪新颜, 等. 流态床CVD法制氮化硅超微粉过程分析及实验验证[J]. 浙江理工大学学报, 2007, 24(1): 36-39. |
Wang Y, Zhou J, Wang X Y, et al. Analysis and verification of silicon nitride super-micro powder synthesis with FBR-CVD technique[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2007, 24(1): 36-39. | |
78 | Kostić Ž G, Stefanović P L, Pavlović P B. Thermodynamic consideration of Si-N and Si-H-N systems for silicon nitride powder production in thermal plasma[J]. Ceramics International, 1996, 22(3): 179-186. |
79 | 王锐, 黄永攀, 罗丽明, 等. 双光束激励制备纳米氮化硅粉体[J]. 硅酸盐学报, 2004, 32(11): 1425-1429. |
Wang R, Huang Y P, Luo L M, et al. Silicon nitride nano-powder prepared by double beam optical stimulation[J]. Journal of the Chinese Silicate Society, 2004, 32(11): 1425-1429. | |
80 | Zhou R C, Chen Y Z, Liang Y, et al. Dispersion behavior of laser-synthesized Si3N4 nanopowders in N-N-dimethylformamide[J]. Ceramics International, 2002, 28(7): 705-709. |
81 | Iwai T, Kawahito K, Yamada T. Process for producing silicon nitride powder: US4405589[P]. 1983-09-20. |
82 | Tetsuo Y, Takashi Y, Keiichiro W, et al. Silicon nitride powder: US5585084[P]. 1996-12-17. |
83 | Kasai K, Tsukuma K,Tsukidate T. Method of manufacturing high-purity silicon nitride powder: US4387079[P]. 1983-06-07. |
84 | Mazdiyasni K S, Cooke C M. Synthesis of the high purity, alpha phase silicon nitride powder: US3959446[P]. 1976-05-25. |
85 | Yamada T, Yamao T, Kondo Y, et al. Process for producing a crystalline silicon nitride powder: US5595718[P]. 1997-01-21. |
86 | Clarke D R. Densification of silicon nitride: effect of chlorine impurities[J]. Journal of the American Ceramic Society, 1982, 65(2): C-21. |
87 | Billy M, Brossard M, Desmaison J, et al. Synthesis of Si and Ge nitrides and Si oxynitride by ammonolysis of chlorides comment on “synthesis, characterization, and consolidation of Si3N4 obtained from ammonolysis of SiCl4”[J]. Journal of the American Ceramic Society, 1975, 58(5/6): 254-255. |
88 | Mazdiyasni K S, Cooke C M. Synthesis, characterization, and consolidation of Si3N4 obtained from ammonolysis of SiCl4[J]. Journal of the American Ceramic Society, 1973, 56(12): 628-633. |
89 | Itoh N, Sasamoto T, Sata T, et al. Impurities in silicon nitride raw materials and correlation with mechanical strength of the hot-pressed body[J]. Journal of the Ceramic Association, Japan, 1982, 90(1040): 209-213. |
90 | Pezzotti G, Ota K, Kleebe H J. Viscous slip along grain boundaries in chlorine-doped silicon nitride[J]. Journal of the American Ceramic Society, 1997, 80(9): 2341-2348. |
91 | Kusano D, Noda Y, Shibasaki H, et al. Effects of impurity iron content on characteristics of sintered reaction-bonded silicon nitride[J]. International Journal of Applied Ceramic Technology, 2013, 10(4): 690-700. |
92 | 胡智源, 张克鋐, 蔡作乾. SiCl4气相氮化法合成超细氮化硅粉[J]. 化学通报, 1989, 52(11): 35-38. |
Hu Z Y, Zhang K H, Cai Z Q. Synthesis of ultrafine silicon nitride powder by nitridation of SiCl4 gas[J]. Chemistry, 1989, 52(11): 35-38. | |
93 | 张克鋐, 安健, 刘艳生, 等. L-G法合成微细氮化硅粉和晶须[J]. 硅酸盐通报, 1994, 13(4): 8-12. |
Zhang K H, An J, Liu Y S, et al. The formation of Si3N4 superfine powder and α-Si3N4 whisker by L-G method[J]. Bulletin of the Chinese Ceramic Society, 1994, 13(4): 8-12. | |
94 | Ziegenbalg G, Focke T, Holldorf H, et al. Gas-phase synthesis of amorphous silicon nitride-reaction paths and powder characteristics[J]. Journal of Materials Science, 1999, 34(9): 2199-2206. |
95 | Lin S S. Mass spectrometric detection of intermediates in chemical vapor deposition of Si3N4 from SiCl4 and NH3[J]. Journal of the Electrochemical Society, 1978, 125(11): 1877-1879. |
[1] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[2] | 葛世轶, 杨遥, 黄正梁, 孙婧元, 王靖岱, 阳永荣. 基于静电分选解析聚乙烯颗粒生长与形貌演变[J]. 化工学报, 2022, 73(4): 1585-1596. |
[3] | 从少领, 赵捷, 杨玉飞, 吴长清, 贺凡, 袁华, 汪晓芹, 熊善新, 吴燕, 周安宁. 煤基聚苯胺制掺N碳微纳米管的实验研究[J]. 化工学报, 2021, 72(9): 4950-4960. |
[4] | 魏娟, 王玉军, 骆广生. 铝源孔容和焙烧升温过程对碳热还原法制备氮化铝粉体的影响[J]. 化工学报, 2021, 72(2): 1156-1168. |
[5] | 孙占朋, 孙国刚, 独岩. 进料位置与风速对旋风分级器颗粒分级效果的影响[J]. 化工学报, 2018, 69(4): 1324-1331. |
[6] | 雷超, 李克峰, 王健, 毛新华, 邹黎明, 谢焕文. LDH催化制备单晶a-Si3N4纳米线研究[J]. 化工学报, 2018, 69(10): 4471-4478. |
[7] | 康军沛, 葛婷, 刘卅, 杨军忠, 任力. 不同球磨粉碎工艺对固相合成β-磷酸三钙纯度和粒度的影响[J]. 化工学报, 2017, 68(1): 424-429. |
[8] | 谢恒来, 吴曼, 赵军, 陈义忠, 郭庆杰. 导向管喷动流化床中废弃印刷线路板的非金属颗粒包覆改性[J]. 化工学报, 2015, 66(3): 1185-1193. |
[9] | 龙文宇, 徐军, 范怡平, 卢春喜. 梯形移动床径向反应器内颗粒的贴壁现象分析[J]. 化工学报, 2014, 65(4): 1179-1185. |
[10] | 王海胜,张晓霞,卢 元,阮志勇,邢新会,姜瑞波. 紫色杆菌素研究进展 [J]. CIESC Journal, 2008, 27(3): 315-. |
[11] | 应汉杰,欧阳平凯. 应用代谢途径流量模型探讨FDP合成机理 [J]. CIESC Journal, 2000, 51(3): 313-319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||