化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1585-1596.doi: 10.11949/0438-1157.20211838

• 分离工程 • 上一篇    下一篇

基于静电分选解析聚乙烯颗粒生长与形貌演变

葛世轶1,2(),杨遥1,2(),黄正梁1,孙婧元1,王靖岱1,阳永荣1   

  1. 1.浙江大学化学工程与生物工程学院,浙江 杭州 310027
    2.浙江大学杭州国际科创中心,浙江 杭州 311215
  • 收稿日期:2021-12-29 修回日期:2022-02-17 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 杨遥 E-mail:geshiyi@zju.edu.cn;yao_yang@zju.edu.cn
  • 作者简介:葛世轶(1993—),男,博士,geshiyi@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(22178303)

Analyzing particle growth and morphology evolution of polyethylene based on electrostatic separation

Shiyi GE1,2(),Yao YANG1,2(),Zhengliang HUANG1,Jingyuan SUN1,Jingdai WANG1,Yongrong YANG1   

  1. 1.College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2.ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, Zhejiang, China
  • Received:2021-12-29 Revised:2022-02-17 Published:2022-04-05 Online:2022-04-25
  • Contact: Yao YANG E-mail:geshiyi@zju.edu.cn;yao_yang@zju.edu.cn

摘要:

解析聚烯烃颗粒生长过程的形貌演变规律对认识聚合反应机理和调控产品性能至关重要。然而,聚烯烃复杂的颗粒生长行为导致极宽的粒径分布和较大的形貌差异,现有研究关注形貌均一的催化剂破碎生长成初级聚烯烃的过程,缺少对形貌各异的初级聚烯烃后续生长和形貌演化的系统研究。此外,亟需一种能够批量分选不同形貌聚烯烃的手段,支撑聚烯烃颗粒生长形貌的统计解析。基于同质同粒径颗粒摩擦荷电的形貌依赖性,开发了聚烯烃颗粒静电-形貌协同分选技术,实现了尺寸相近的不同形貌聚烯烃颗粒的批量分选,并基于此考察了聚乙烯颗粒生长过程中形貌的分化与演变规律。结果显示,聚乙烯颗粒生长过程中存在普遍的形貌劣化现象,随着粒径增大,颗粒形貌逐渐偏离标准球形;颗粒粒径、形貌、结晶度等的耦合解析表明聚乙烯颗粒存在两种可能的颗粒生长模式和形貌劣化路径:结晶速率过快导致的颗粒破碎和催化剂形貌复制效应导致的形貌劣化。研究方法和结果可为聚烯烃形貌研究和开发高性能聚烯烃催化剂提供重要支撑。

关键词: 聚乙烯, 静电, 形貌, 流化床, 聚合, 粉体技术

Abstract:

Analyzing the morphology evolution of polyolefin particles during the growth process is crucial for understanding the polymerization mechanism and regulating product properties. The complex particle growth of polyolefins leads to a large morphology difference and an extremely wide range of particle size distribution. However, existing studies focus on the process of primary polyolefins growing from the fragmentation of homogeneous catalysts, but lack of systematic studies on the subsequent growth and morphology evolution of primary polyolefins with different morphologies. Besides, a method of batch sorting polyolefin with different morphologies is needed to support statistical analysis of morphology evolution. An electrostatic-morphology co-separation method for polyolefin particles was developed based on the morphology-dependence of same-material particles with the same size. Through this method, batch sorting of polyolefin particles with similar sizes but different morphologies was achieved and the morphology evolution during polyethylene particle growth was investigated. The results show that there is a general phenomenon of morphology deterioration during polyethylene particle growth. As the particle size increases, the particle morphology gradually deviates from the sphere. The coupling analysis of particle size, morphology and crystallinity indicates two possible modes of particle growth as well as morphology deterioration: the particle fragmentation caused by excessive crystallization rate, and the replication of catalyst morphology. The method and results in this paper provide important support for the study of polyolefin morphology and the development of high-performance polyolefin catalysts.

Key words: polyethylene, electrostatics, morphology, fluidized-bed, polymerization, powder technology

中图分类号: 

  • TQ 325.12

图1

实验装置"

表1

聚乙烯颗粒的性质"

颗粒商业牌号类型催化剂密度/(kg/m3)熔融指数/(g/10 min)
PE-AQHM32HDPEMetallocene9370.6
PE-BQHM22HDPEMetallocene9370.6
PE-CDMG1820LLDPEZiegler-Natta9182.0
PE-DDGDB2480HDPEChromium9450.46

图2

粒径600~850 μm的聚乙烯正电颗粒和负电颗粒的SEM图像和圆形度"

表2

圆形度及对应的颗粒投影图像"

CircularityTypical images
0.93—0.94
0.92—0.93
0.91—0.92
0.90—0.91
0.89—0.90
0.88—0.89

图3

聚乙烯颗粒各个窄粒径段的整体圆形度和静电分选正负荷电颗粒的SEM图像"

图4

四种牌号聚乙烯颗粒各窄粒径样品的中位径D50与中位圆形度ψ50"

图5

四种牌号聚乙烯各窄粒径分布正电颗粒和负电颗粒的熔融焓"

图6

聚乙烯颗粒破碎机理示意图[8]"

图7

不同形貌的聚乙烯颗粒的力-位移曲线"

图8

AFM测定的PE-A颗粒的杨氏模量"

图9

PE-A粗糙颗粒的拉曼谱图(r/r0=1.0)"

图10

PE-A颗粒剖面拉曼谱图的表面结晶度"

图11

聚乙烯颗粒生长模式示意图"

图12

聚乙烯PE-E颗粒的SEM图和对应的催化剂SEM图"

1 Alizadeh A, McKenna T F L. Particle growth during the polymerization of olefins on supported catalysts. Part 2: Current experimental understanding and modeling progresses on particle fragmentation, growth, and morphology development[J]. Macromolecular Reaction Engineering, 2018, 12(1): 1700027.
2 Cecchin G, Morini G, Pelliconi A. Polypropene product innovation by reactor granule technology[J]. Macromolecular Symposia, 2001, 173(1): 195-210.
3 Hutchinson R A, Ray W H. Polymerization of olefins through heterogeneous catalysis. IX. Experimental study of propylene polymerization over a high activity MgCl2-supported Ti catalyst[J]. Journal of Applied Polymer Science, 1991, 43(7): 1271-1285.
4 Hock C W. How TiCl3 catalysts control the texture of as-polymerized polypropylene[J]. Journal of Polymer Science Part A-1: Polymer Chemistry, 1966, 4(12): 3055-3064.
5 Wristers J. Direct examination of polymerization catalyst by electron scanning microscopy[J]. Journal of Polymer Science Part A-2: Polymer Physics, 1973, 11(8): 1619-1629.
6 Chen Y, Liu X G. Modeling mass transport of propylene polymerization on Ziegler-Natta catalyst[J]. Polymer, 2005, 46(22): 9434-9442.
7 Harshe Y M, Utikar R P, Ranade V V. A computational model for predicting particle size distribution and performance of fluidized bed polypropylene reactor[J]. Chemical Engineering Science, 2004, 59(22/23): 5145-5156.
8 McKenna T F L, di Martino A, Weickert G, et al. Particle growth during the polymerisation of olefins on supported catalysts, 1-nascent polymer structures[J]. Macromolecular Reaction Engineering, 2010, 4(1): 40-64.
9 Pater J T M, Weickert G, Loos J, et al. High precision prepolymerization of propylene at extremely low reaction rates—kinetics and morphology[J]. Chemical Engineering Science, 2001, 56(13): 4107-4120.
10 Ciardelli F, Altomare A, Michelotti M. From homogeneous to supported metallocene catalysts[J]. Catalysis Today, 1998, 41(1/2/3): 149-157.
11 Hendrickson G. Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting[J]. Chemical Engineering Science, 2006, 61(4): 1041-1064.
12 Giffin A, Mehrani P. Effect of gas relative humidity on reactor wall fouling generated due to bed electrification in gas-solid fluidized beds[J]. Powder Technology, 2013, 235: 368-375.
13 Schmeal W R, Street J R. Polymerization in expanding catalyst particles[J]. AIChE Journal, 1971, 17(5): 1188-1197.
14 Singh D, Merrill R P. Molecular weight distribution of polyethylene produced by Ziegler-Natta catalysts[J]. Macromolecules, 1971, 4(5): 599-604.
15 Galvan R, Tirrell M. Molecular weight distribution predictions for heterogeneous Ziegler-Natta polymerization using a two-site model[J]. Chemical Engineering Science, 1986, 41(9): 2385-2393.
16 Nagel E J, Kirillov V A, Ray W H. Prediction of molecular weight distributions for high-density polyolefins[J]. Industrial & Engineering Chemistry Product Research and Development, 1980, 19(3): 372-379.
17 Hutchinson R A, Chen C M, Ray W H. Polymerization of olefins through heterogeneous catalysis X: Modeling of particle growth and morphology[J]. Journal of Applied Polymer Science, 1992, 44(8): 1389-1414.
18 Sheikhzadeh M, Pourmahdian S. A multipore model for heterogeneous catalytic polymerization: structure-performance relationships[J]. Macromolecular Reaction Engineering, 2021: 2100021.
19 Niegisch W D, Crisafulli S T, Nagel T S, et al. Characterization techniques for the study of silica fragmentation in the early stages of ethylene polymerization[J]. Macromolecules, 1992, 25(15): 3910-3916.
20 Noristi L, Marchetti E, Baruzzi G, et al. Investigation on the particle growth mechanism in propylene polymerization with MgCl2-supported Ziegler-Natta catalysts[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32(16): 3047-3059.
21 Hong S C, Teranishi T, Soga K. Investigation on the polymer particle growth in ethylene polymerization with PS beads supported rac-Ph2Si(Ind)2ZrCl2 catalyst[J]. Polymer, 1998, 39(26): 7153-7157.
22 Jang Y J, Naundorf C, Klapper M, et al. Study of the fragmentation process of different supports for metallocenes by laser scanning confocal fluorescence microscopy (LSCFM)[J]. Macromolecular Chemistry and Physics, 2005, 206(20): 2027-2037.
23 Kittilsen P, Svendsen H F, McKenna T F. Viscoelastic model for particle fragmentation in olefin polymerization[J]. AIChE Journal, 2003, 49(6): 1495-1507.
24 Horáčková B, Grof Z, Kosek J. Dynamics of fragmentation of catalyst carriers in catalytic polymerization of olefins[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5264-5270.
25 Bossers K W, Valadian R, Zanoni S, et al. Correlated X-ray ptychography and fluorescence nano-tomography on the fragmentation behavior of an individual catalyst particle during the early stages of olefin polymerization[J]. Journal of the American Chemical Society, 2020, 142(8): 3691-3695.
26 Pater J T M, Weickert G, van Swaaij W P M. Polymerization of liquid propylene with a fourth-generation Ziegler–Natta catalyst: influence of temperature, hydrogen, monomer concentration, and prepolymerization method on powder morphology[J]. Journal of Applied Polymer Science, 2003, 87(9): 1421-1435.
27 Zanoni S, Nikolopoulos N, Welle A, et al. Early-stage particle fragmentation behavior of a commercial silica-supported metallocene catalyst[J]. Catalysis Science & Technology, 2021, 11(15): 5335-5348.
28 Weist E L, Ali A H, Conner W C. Morphological study of supported chromium polymerization catalysts. 1. Activation[J]. Macromolecules, 1987, 20(3): 689-693.
29 Rönkkö H L, Korpela T, Knuuttila H, et al. Particle growth and fragmentation of solid self-supported Ziegler-Natta-type catalysts in propylene polymerization[J]. Journal of Molecular Catalysis A: Chemical, 2009, 309(1/2): 40-49.
30 Emami M, Parvazinia M, Abedini H. Gas-phase polymerization of propylene at low reaction rates: a precise look at catalyst fragmentation[J]. Iranian Polymer Journal, 2017, 26(11): 871-883.
31 Vestberg T, Denifl P, Wilén C E. Porous versus novel compact Ziegler-Natta catalyst particles and their fragmentation during the early stages of bulk propylene polymerization[J]. Journal of Applied Polymer Science, 2008, 110(4): 2021-2029.
32 Lacks D J, Mohan Sankaran R. Contact electrification of insulating materials[J]. Journal of Physics D: Applied Physics, 2011, 44(45): 453001.
33 Gilbert J S, Lane S J, Sparks R S J, et al. Charge measurements on particle fallout from a volcanic plume[J]. Nature, 1991, 349(6310): 598-600.
34 Inculet I I, Peter Castle G S, Aartsen G. Generation of bipolar electric fields during industrial handling of powders[J]. Chemical Engineering Science, 2006, 61(7): 2249-2253.
35 Forward K M, Lacks D J, Sankaran R M. Charge segregation depends on particle size in triboelectrically charged granular materials[J]. Physical Review Letters, 2009, 102(2): 028001.
36 Wang F, Wang J D, Yang Y R. Distribution of electrostatic potential in a gas-solid fluidized bed and measurement of bed level[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9517-9526.
37 Moughrabiah W O, Grace J R, Bi X T. Effects of pressure, temperature, and gas velocity on electrostatics in gas–solid fluidized beds[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 320-325.
38 Sowinski A, Mayne A, Mehrani P. Effect of fluidizing particle size on electrostatic charge generation and reactor wall fouling in gas-solid fluidized beds[J]. Chemical Engineering Science, 2012, 71: 552-563.
39 杨遥, 葛世轶, 黄正梁, 等. 一种利用静电解析聚乙烯生长形貌的系统和方法: 111822151A[P]. 20201027.
Yang Y, Ge S Y, Huang Z L, et al. System and method for analyzing growth morphology of polyethylene by utilizing static electricity: 111822151A[P]. 20201027.
40 Maugis D. Adhesion of spheres: the JKR-DMT transition using a dugdale model[J]. Journal of Colloid and Interface Science, 1992, 150(1): 243-269.
41 Lantz M A, O'Shea S J, Welland M E, et al. Atomic-force-microscope study of contact area and friction on NbSe2 [J]. Physical Review B, 1997, 55(16): 10776-10785.
42 Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1/2/3/4/5/6): 1-152.
43 Affatato S, Modena E, Carmignato S, et al. The use of Raman spectroscopy in the analysis of UHMWPE uni-condylar bearing systems after run on a force and displacement control knee simulators [J]. Wear, 2013, 297(1/2): 781-790.
[1] 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156.
[2] 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012.
[3] 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238.
[4] 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711.
[5] 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826.
[6] 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606.
[7] 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734.
[8] 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586.
[9] 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378.
[10] 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351.
[11] 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101.
[12] 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389.
[13] 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. αω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369.
[14] 许万, 陈振斌, 张慧娟, 牛昉昉, 火婷, 刘兴盛. 线性温敏性聚合物嵌段调控的ReO4-智能离子印迹聚合物的设计制备及其吸附分离性能研究[J]. 化工学报, 2023, 74(2): 941-952.
[15] 胡月, 马守骏, 蹇锡高, 翁志焕. 新型聚芳醚腈固化邻苯二甲腈树脂的研究[J]. 化工学报, 2023, 74(2): 871-882.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!