化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1585-1596.DOI: 10.11949/0438-1157.20211838
葛世轶1,2(),杨遥1,2(
),黄正梁1,孙婧元1,王靖岱1,阳永荣1
收稿日期:
2021-12-29
修回日期:
2022-02-17
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
杨遥
作者简介:
葛世轶(1993—),男,博士,基金资助:
Shiyi GE1,2(),Yao YANG1,2(
),Zhengliang HUANG1,Jingyuan SUN1,Jingdai WANG1,Yongrong YANG1
Received:
2021-12-29
Revised:
2022-02-17
Online:
2022-04-05
Published:
2022-04-25
Contact:
Yao YANG
摘要:
解析聚烯烃颗粒生长过程的形貌演变规律对认识聚合反应机理和调控产品性能至关重要。然而,聚烯烃复杂的颗粒生长行为导致极宽的粒径分布和较大的形貌差异,现有研究关注形貌均一的催化剂破碎生长成初级聚烯烃的过程,缺少对形貌各异的初级聚烯烃后续生长和形貌演化的系统研究。此外,亟需一种能够批量分选不同形貌聚烯烃的手段,支撑聚烯烃颗粒生长形貌的统计解析。基于同质同粒径颗粒摩擦荷电的形貌依赖性,开发了聚烯烃颗粒静电-形貌协同分选技术,实现了尺寸相近的不同形貌聚烯烃颗粒的批量分选,并基于此考察了聚乙烯颗粒生长过程中形貌的分化与演变规律。结果显示,聚乙烯颗粒生长过程中存在普遍的形貌劣化现象,随着粒径增大,颗粒形貌逐渐偏离标准球形;颗粒粒径、形貌、结晶度等的耦合解析表明聚乙烯颗粒存在两种可能的颗粒生长模式和形貌劣化路径:结晶速率过快导致的颗粒破碎和催化剂形貌复制效应导致的形貌劣化。研究方法和结果可为聚烯烃形貌研究和开发高性能聚烯烃催化剂提供重要支撑。
中图分类号:
葛世轶, 杨遥, 黄正梁, 孙婧元, 王靖岱, 阳永荣. 基于静电分选解析聚乙烯颗粒生长与形貌演变[J]. 化工学报, 2022, 73(4): 1585-1596.
Shiyi GE, Yao YANG, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Analyzing particle growth and morphology evolution of polyethylene based on electrostatic separation[J]. CIESC Journal, 2022, 73(4): 1585-1596.
颗粒 | 商业牌号 | 类型 | 催化剂 | 密度/(kg/m3) | 熔融指数/(g/10 min) |
---|---|---|---|---|---|
PE-A | QHM32 | HDPE | Metallocene | 937 | 0.6 |
PE-B | QHM22 | HDPE | Metallocene | 937 | 0.6 |
PE-C | DMG1820 | LLDPE | Ziegler-Natta | 918 | 2.0 |
PE-D | DGDB2480 | HDPE | Chromium | 945 | 0.46 |
表1 聚乙烯颗粒的性质
Table 1 Properties of polyethylene particles
颗粒 | 商业牌号 | 类型 | 催化剂 | 密度/(kg/m3) | 熔融指数/(g/10 min) |
---|---|---|---|---|---|
PE-A | QHM32 | HDPE | Metallocene | 937 | 0.6 |
PE-B | QHM22 | HDPE | Metallocene | 937 | 0.6 |
PE-C | DMG1820 | LLDPE | Ziegler-Natta | 918 | 2.0 |
PE-D | DGDB2480 | HDPE | Chromium | 945 | 0.46 |
Circularity | Typical images |
---|---|
0.93—0.94 | ![]() |
0.92—0.93 | ![]() |
0.91—0.92 | ![]() |
0.90—0.91 | ![]() |
0.89—0.90 | ![]() |
0.88—0.89 | ![]() |
表2 圆形度及对应的颗粒投影图像
Table 2 Circularity and corresponding projection images
Circularity | Typical images |
---|---|
0.93—0.94 | ![]() |
0.92—0.93 | ![]() |
0.91—0.92 | ![]() |
0.90—0.91 | ![]() |
0.89—0.90 | ![]() |
0.88—0.89 | ![]() |
图3 聚乙烯颗粒各个窄粒径段的整体圆形度和静电分选正负荷电颗粒的SEM图像
Fig.3 Circularity of PE particles with various narrow PSDs and SEM images of positively and negatively charged particles by electrostatic separation
1 | Alizadeh A, McKenna T F L. Particle growth during the polymerization of olefins on supported catalysts. Part 2: Current experimental understanding and modeling progresses on particle fragmentation, growth, and morphology development[J]. Macromolecular Reaction Engineering, 2018, 12(1): 1700027. |
2 | Cecchin G, Morini G, Pelliconi A. Polypropene product innovation by reactor granule technology[J]. Macromolecular Symposia, 2001, 173(1): 195-210. |
3 | Hutchinson R A, Ray W H. Polymerization of olefins through heterogeneous catalysis. IX. Experimental study of propylene polymerization over a high activity MgCl2-supported Ti catalyst[J]. Journal of Applied Polymer Science, 1991, 43(7): 1271-1285. |
4 | Hock C W. How TiCl3 catalysts control the texture of as-polymerized polypropylene[J]. Journal of Polymer Science Part A-1: Polymer Chemistry, 1966, 4(12): 3055-3064. |
5 | Wristers J. Direct examination of polymerization catalyst by electron scanning microscopy[J]. Journal of Polymer Science Part A-2: Polymer Physics, 1973, 11(8): 1619-1629. |
6 | Chen Y, Liu X G. Modeling mass transport of propylene polymerization on Ziegler-Natta catalyst[J]. Polymer, 2005, 46(22): 9434-9442. |
7 | Harshe Y M, Utikar R P, Ranade V V. A computational model for predicting particle size distribution and performance of fluidized bed polypropylene reactor[J]. Chemical Engineering Science, 2004, 59(22/23): 5145-5156. |
8 | McKenna T F L, di Martino A, Weickert G, et al. Particle growth during the polymerisation of olefins on supported catalysts, 1-nascent polymer structures[J]. Macromolecular Reaction Engineering, 2010, 4(1): 40-64. |
9 | Pater J T M, Weickert G, Loos J, et al. High precision prepolymerization of propylene at extremely low reaction rates—kinetics and morphology[J]. Chemical Engineering Science, 2001, 56(13): 4107-4120. |
10 | Ciardelli F, Altomare A, Michelotti M. From homogeneous to supported metallocene catalysts[J]. Catalysis Today, 1998, 41(1/2/3): 149-157. |
11 | Hendrickson G. Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting[J]. Chemical Engineering Science, 2006, 61(4): 1041-1064. |
12 | Giffin A, Mehrani P. Effect of gas relative humidity on reactor wall fouling generated due to bed electrification in gas-solid fluidized beds[J]. Powder Technology, 2013, 235: 368-375. |
13 | Schmeal W R, Street J R. Polymerization in expanding catalyst particles[J]. AIChE Journal, 1971, 17(5): 1188-1197. |
14 | Singh D, Merrill R P. Molecular weight distribution of polyethylene produced by Ziegler-Natta catalysts[J]. Macromolecules, 1971, 4(5): 599-604. |
15 | Galvan R, Tirrell M. Molecular weight distribution predictions for heterogeneous Ziegler-Natta polymerization using a two-site model[J]. Chemical Engineering Science, 1986, 41(9): 2385-2393. |
16 | Nagel E J, Kirillov V A, Ray W H. Prediction of molecular weight distributions for high-density polyolefins[J]. Industrial & Engineering Chemistry Product Research and Development, 1980, 19(3): 372-379. |
17 | Hutchinson R A, Chen C M, Ray W H. Polymerization of olefins through heterogeneous catalysis X: Modeling of particle growth and morphology[J]. Journal of Applied Polymer Science, 1992, 44(8): 1389-1414. |
18 | Sheikhzadeh M, Pourmahdian S. A multipore model for heterogeneous catalytic polymerization: structure-performance relationships[J]. Macromolecular Reaction Engineering, 2021: 2100021. |
19 | Niegisch W D, Crisafulli S T, Nagel T S, et al. Characterization techniques for the study of silica fragmentation in the early stages of ethylene polymerization[J]. Macromolecules, 1992, 25(15): 3910-3916. |
20 | Noristi L, Marchetti E, Baruzzi G, et al. Investigation on the particle growth mechanism in propylene polymerization with MgCl2-supported Ziegler-Natta catalysts[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32(16): 3047-3059. |
21 | Hong S C, Teranishi T, Soga K. Investigation on the polymer particle growth in ethylene polymerization with PS beads supported rac-Ph2Si(Ind)2ZrCl2 catalyst[J]. Polymer, 1998, 39(26): 7153-7157. |
22 | Jang Y J, Naundorf C, Klapper M, et al. Study of the fragmentation process of different supports for metallocenes by laser scanning confocal fluorescence microscopy (LSCFM)[J]. Macromolecular Chemistry and Physics, 2005, 206(20): 2027-2037. |
23 | Kittilsen P, Svendsen H F, McKenna T F. Viscoelastic model for particle fragmentation in olefin polymerization[J]. AIChE Journal, 2003, 49(6): 1495-1507. |
24 | Horáčková B, Grof Z, Kosek J. Dynamics of fragmentation of catalyst carriers in catalytic polymerization of olefins[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5264-5270. |
25 | Bossers K W, Valadian R, Zanoni S, et al. Correlated X-ray ptychography and fluorescence nano-tomography on the fragmentation behavior of an individual catalyst particle during the early stages of olefin polymerization[J]. Journal of the American Chemical Society, 2020, 142(8): 3691-3695. |
26 | Pater J T M, Weickert G, van Swaaij W P M. Polymerization of liquid propylene with a fourth-generation Ziegler–Natta catalyst: influence of temperature, hydrogen, monomer concentration, and prepolymerization method on powder morphology[J]. Journal of Applied Polymer Science, 2003, 87(9): 1421-1435. |
27 | Zanoni S, Nikolopoulos N, Welle A, et al. Early-stage particle fragmentation behavior of a commercial silica-supported metallocene catalyst[J]. Catalysis Science & Technology, 2021, 11(15): 5335-5348. |
28 | Weist E L, Ali A H, Conner W C. Morphological study of supported chromium polymerization catalysts. 1. Activation[J]. Macromolecules, 1987, 20(3): 689-693. |
29 | Rönkkö H L, Korpela T, Knuuttila H, et al. Particle growth and fragmentation of solid self-supported Ziegler-Natta-type catalysts in propylene polymerization[J]. Journal of Molecular Catalysis A: Chemical, 2009, 309(1/2): 40-49. |
30 | Emami M, Parvazinia M, Abedini H. Gas-phase polymerization of propylene at low reaction rates: a precise look at catalyst fragmentation[J]. Iranian Polymer Journal, 2017, 26(11): 871-883. |
31 | Vestberg T, Denifl P, Wilén C E. Porous versus novel compact Ziegler-Natta catalyst particles and their fragmentation during the early stages of bulk propylene polymerization[J]. Journal of Applied Polymer Science, 2008, 110(4): 2021-2029. |
32 | Lacks D J, Mohan Sankaran R. Contact electrification of insulating materials[J]. Journal of Physics D: Applied Physics, 2011, 44(45): 453001. |
33 | Gilbert J S, Lane S J, Sparks R S J, et al. Charge measurements on particle fallout from a volcanic plume[J]. Nature, 1991, 349(6310): 598-600. |
34 | Inculet I I, Peter Castle G S, Aartsen G. Generation of bipolar electric fields during industrial handling of powders[J]. Chemical Engineering Science, 2006, 61(7): 2249-2253. |
35 | Forward K M, Lacks D J, Sankaran R M. Charge segregation depends on particle size in triboelectrically charged granular materials[J]. Physical Review Letters, 2009, 102(2): 028001. |
36 | Wang F, Wang J D, Yang Y R. Distribution of electrostatic potential in a gas-solid fluidized bed and measurement of bed level[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9517-9526. |
37 | Moughrabiah W O, Grace J R, Bi X T. Effects of pressure, temperature, and gas velocity on electrostatics in gas–solid fluidized beds[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 320-325. |
38 | Sowinski A, Mayne A, Mehrani P. Effect of fluidizing particle size on electrostatic charge generation and reactor wall fouling in gas-solid fluidized beds[J]. Chemical Engineering Science, 2012, 71: 552-563. |
39 | 杨遥, 葛世轶, 黄正梁, 等. 一种利用静电解析聚乙烯生长形貌的系统和方法: 111822151A[P]. 20201027. |
Yang Y, Ge S Y, Huang Z L, et al. System and method for analyzing growth morphology of polyethylene by utilizing static electricity: 111822151A[P]. 20201027. | |
40 | Maugis D. Adhesion of spheres: the JKR-DMT transition using a dugdale model[J]. Journal of Colloid and Interface Science, 1992, 150(1): 243-269. |
41 | Lantz M A, O'Shea S J, Welland M E, et al. Atomic-force-microscope study of contact area and friction on NbSe2 [J]. Physical Review B, 1997, 55(16): 10776-10785. |
42 | Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1/2/3/4/5/6): 1-152. |
43 | Affatato S, Modena E, Carmignato S, et al. The use of Raman spectroscopy in the analysis of UHMWPE uni-condylar bearing systems after run on a force and displacement control knee simulators [J]. Wear, 2013, 297(1/2): 781-790. |
[1] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[2] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[3] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[4] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[5] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[6] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[7] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[8] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[9] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[10] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[11] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[12] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[13] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[14] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[15] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 453
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 507
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||