化工学报 ›› 2022, Vol. 73 ›› Issue (1): 85-96.DOI: 10.11949/0438-1157.20210901
收稿日期:
2021-07-01
修回日期:
2021-10-19
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
徐建鸿
作者简介:
周弋惟(1997—),女,博士研究生,基金资助:
Yiwei ZHOU(),Zhuo CHEN,Jianhong XU()
Received:
2021-07-01
Revised:
2021-10-19
Online:
2022-01-05
Published:
2022-01-18
Contact:
Jianhong XU
摘要:
全球电动汽车和智能手机市场的逐年扩大,直接促进了全球锂离子电池市场规模的增加,锂离子电池的回收与再利用具有重要的经济和社会价值。本文综述了废旧锂离子电池正极材料的主要回收方法,包括梯次利用法、火法冶金法、湿法冶金法和直接回收法,重点综述了湿法冶金法的工艺流程和重要步骤,介绍了机械处理与正极材料浸出、浸出液的回收利用、有价值金属产物的再生合成的研究进展,最后对湿法冶金综合回收废旧锂电池正极材料的未来发展进行了展望。
中图分类号:
周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1): 85-96.
Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Progress and prospect of recycling spent lithium battery cathode materials by hydrometallurgy[J]. CIESC Journal, 2022, 73(1): 85-96.
1 | IEA. Global EV Outlook 2021[EB/OL]. [2021-08-08]. . |
2 | Aman C. Apple Shipped Record iPhones, Global Smartphone Market Recovery Continues[EB/OL]. [2021-08-08]. . |
3 | 2020年全球锂离子电池产业发展现状及区域竞争格局分析[EB/OL]. [2021-06-30]. . |
Development status and regional competition pattern analysis of global lithium ion battery industry in 2020 [EB/OL]. [2021-06-30]. . | |
4 | 2021年全球动力锂电池行业市场供需现状及发展趋势分析 “电池荒”最早将2025年出现[EB/OL]. [2021-08-08]. . |
Analysis of market supply and demand status and development trend of global lithium battery industry in 2021 “battery shortage” will appear in 2025 at the earliest[EB/OL]. [2021-08-08]. . | |
5 | Placke T, Kloepsch R, Dühnen S, et al. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density[J]. Journal of Solid State Electrochemistry, 2017, 21(7): 1939-1964. |
6 | 2019年中国锂电池正极材料行业市场现状分析 下游产业链驱动行业高速发展[EB/OL]. [2021-06-30]. . |
Analysis of the market status quo of China's lithium battery cathode material industry in 2019 downstream industry chain drives the rapid development of the industry[EB/OL]. [2021-06-30]. . | |
7 | Yao L, Yao H S, Xi G X, et al. Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using D, L-malic acid[J]. RSC Advances, 2016, 6(22): 17947-17954. |
8 | 2020年中国锂电池正极材料行业调研分析报告[EB/OL]. [2021-08-08]. . |
Research and analysis report of China lithium battery cathode material industry in 2020[EB/OL]. [2021-08-08]. . | |
9 | 2021年中国锂电池正极材料行业调研分析报告[EB/OL]. [2021-08-08]. . |
Research and analysis report of China lithium battery cathode material industry in 2021[EB/OL]. [2021-08-08]. . | |
10 | Harper G, Sommerville R, Kendrick E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. |
11 | Ahmadi L, Young S B, Fowler M, et al. A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems[J]. The International Journal of Life Cycle Assessment, 2017, 22(1): 111-124. |
12 | Chen M Y, Ma X T, Chen B, et al. Recycling end-of-life electric vehicle lithium-ion batteries[J]. Joule, 2019, 3(11): 2622-2646. |
13 | Richa K, Babbitt C W, Gaustad G. Eco-efficiency analysis of a lithium-ion battery waste hierarchy inspired by circular economy[J]. Journal of Industrial Ecology, 2017, 21(3): 715-730. |
14 | Sayilgan E, Kukrer T, Civelekoglu G, et al. A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries[J]. Hydrometallurgy, 2009, 97(3/4): 158-166. |
15 | Natarajan S, Aravindan V. Burgeoning prospects of spent lithium-ion batteries in multifarious applications[J]. Advanced Energy Materials, 2018, 8(33): 1802303. |
16 | Lv W, Wang Z H, Cao H B, et al. A critical review and analysis on the recycling of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1504-1521. |
17 | Pinegar H, Smith Y R. Recycling of end-of-life lithium ion batteries, part I: Commercial processes[J]. Journal of Sustainable Metallurgy, 2019, 5(3): 402-416. |
18 | Sonoc A, Jeswiet J, Soo V K. Opportunities to improve recycling of automotive lithium ion batteries[J]. Procedia CIRP, 2015, 29: 752-757. |
19 | Li L, Bian Y F, Zhang X X, et al. Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study[J]. Journal of Power Sources, 2018, 377: 70-79. |
20 | Sabisch J E C, Anapolsky A, Liu G, et al. Evaluation of using pre-lithiated graphite from recycled Li-ion batteries for new LiB anodes[J]. Resources, Conservation and Recycling, 2018, 129: 129-134. |
21 | Li X L, Zhang J, Song D W, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345: 78-84. |
22 | Zhan R T, Payne T, Leftwich T, et al. De-agglomeration of cathode composites for direct recycling of Li-ion batteries[J]. Waste Management, 2020, 105: 39-48. |
23 | Georgi-Maschler T, Friedrich B, Weyhe R, et al. Development of a recycling process for Li-ion batteries[J]. Journal of Power Sources, 2012, 207: 173-182. |
24 | 刘春丽, 曹利娜. 一种从废旧锂离子动力电池中回收有价金属的方法: 107196004A[P]. 2017-09-22. |
Liu C L, Cao L N. Method for recycling valuable metal from waste lithium-ion power battery: 107196004A[P]. 2017-09-22. | |
25 | 李敦钫, 王成彦, 邱定蕃, 等. 一种直接焙烧处理废旧锂离子电池及回收有价金属的方法: 101519726A[P]. 2011-01-05. |
Li D F, Wang C Y, Qiu D F, et al. Method for directly roasting and processing spent lithium ion batteries and recycling valuable metals: 101519726A[P]. 2011-01-05. | |
26 | 赵林, 龙泽彬, 赵澎, 等. 废旧锰酸锂电池中有价金属回收方法: 108123185A[P]. 2018-06-05. |
Zhao L, Long Z B, Zhao P, et al. Recovery method of valuable metal in waste lithium manganate battery: 108123185A [P]. 2018-06-05. | |
27 | 王成彦, 张家靓, 胡军涛, 等. 一种从废旧锂离子电池中综合回收有价金属的方法: 107017443A[P]. 2017-08-04. |
Wang C Y, Zhang J L, Hu J T, et al. Method for comprehensively recycling valuable metals from spent lithium ion battery: 107017443A[P]. 2017-08-04. | |
28 | 张家靓, 胡军涛, 等. 一种从废旧锂离子电池中综合回收有价金属的方法: 106129511A[P]. 2016-11-16. |
Zhang J L, Hu J T, et al. Method for comprehensively recycling valuable metals from spent lithium ion battery: 106129511A[P]. 2016-11-16. | |
29 | 谢智平, 潘剑明, 马银标, 等. 一种从废旧锂离子电池中综合回收有价金属的方法: 110029225A[P]. 2019-07-19. |
Xie Z P, Pan J M, Ma Y B, et al. Method for comprehensively recycling valuable metals from spent lithium ion battery: 110029225A[P]. 2019-07-19. | |
30 | 王德钊, 刘春丽, 刘浩, 等. 一种锂离子电池正极材料的综合回收方法: 107267759B[P]. 2017-10-20. |
Wang D Z, Liu C L, Liu H, et al. Comprehensive recycling method of lithium ion battery anode material: 107267759B[P]. 2017-10-20. | |
31 | 蒋训雄, 张贤, 赵峰, 等. 从废旧锂离子电池中分步提取锂和镍钴的方法: 110938743A[P]. 2020-03-31. |
Jiang X X, Zhang X, Zhao F, et al. Method for extracting lithium and nickel cobalt from waste lithium ion battery step by step: 110938743A[P]. 2020-03-31. | |
32 | 熊仁利, 王平, 黄春莲, 等. 镍钴锰三元正极材料回收利用的方法: 103199320A[P]. 2015-05-27. |
Xiong R L, Wang P, Huang C L, et al. Method for recycling nickel-cobalt-manganese ternary anode material: 103199320A[P]. 2015-05-27. | |
33 | Zhang X X, Li L, Fan E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-7302. |
34 | Pinegar H, Smith Y R. Recycling of end-of-life lithium-ion batteries, part Ⅱ: Laboratory-scale research developments in mechanical, thermal, and leaching treatments[J]. Journal of Sustainable Metallurgy, 2020, 6(1): 142-160. |
35 | Gao W, Zhang X, Zheng X, et al. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process[J]. Environmental Science & Technology, 2017, 51(3): 1662-1669. |
36 | Niu Z R, Zou Y K, Xin B P, et al. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration[J]. Chemosphere, 2014, 109: 92-98. |
37 | Dorella G, Mansur M B. A study of the separation of cobalt from spent Li-ion battery residues[J]. Journal of Power Sources, 2007, 170(1): 210-215. |
38 | Jha M K, Kumari A, Jha A K, et al. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone[J]. Waste Management, 2013, 33(9): 1890-1897. |
39 | Meshram P, Pandey B D, Mankhand T R. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: leaching and kinetic aspects[J]. Waste Management, 2015, 45: 306-313. |
40 | Meshram P, Pandey B D, Mankhand T R. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching[J]. Chemical Engineering Journal, 2015, 281: 418-427. |
41 | Zheng R J, Zhao L, Wang W H, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J]. RSC Advances, 2016, 6(49): 43613-43625. |
42 | Joulié M, Laucournet R, Billy E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 551-555. |
43 | Li L, Chen R J, Sun F, et al. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process[J]. Hydrometallurgy, 2011, 108(3/4): 220-225. |
44 | Li L, Ge J, Chen R J, et al. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries[J]. Waste Management, 2010, 30(12): 2615-2621. |
45 | Li L, Qu W J, Zhang X X, et al. Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries[J]. Journal of Power Sources, 2015, 282: 544-551. |
46 | Zhang X H, Cao H B, Xie Y B, et al. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: process optimization and kinetics analysis[J]. Separation and Purification Technology, 2015, 150: 186-195. |
47 | He L P, Sun S Y, Mu Y Y, et al. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l-tartaric acid as a leachant[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 714–721. |
48 | Chen D D, Rao S, Wang D X, et al. Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid- l-ascorbic acid system[J]. Chemical Engineering Journal, 2020, 388: 124321. |
49 | Pagnanelli F, Moscardini E, Granata G, et al. Acid reducing leaching of cathodic powder from spent lithium ion batteries: Glucose oxidative pathways and particle area evolution[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3201-3207. |
50 | Perez J P H, Folens K, Leus K, et al. Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams[J]. Resources, Conservation and Recycling, 2019, 142: 177-188. |
51 | Joo S H, Shin D, Oh C, et al. Extraction of manganese by alkyl monocarboxylic acid in a mixed extractant from a leaching solution of spent lithium-ion battery ternary cathodic material[J]. Journal of Power Sources, 2016, 305: 175-181. |
52 | Chen X P, Xu B, Zhou T, et al. Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries[J]. Separation and Purification Technology, 2015, 144: 197-205. |
53 | Liu T C, Chen J, Shen X, et al. Regulating and regenerating the valuable metals from the cathode materials in lithium-ion batteries by nickel-cobalt-manganese co-extraction[J]. Separation and Purification Technology, 2021, 259: 118088. |
54 | Wang F C, He F H, Zhao J M, et al. Extraction and separation of cobalt(Ⅱ), copper(Ⅱ) and manganese(Ⅱ) by Cyanex272, PC-88A and their mixtures[J]. Separation and Purification Technology, 2012, 93: 8-14. |
55 | Larouche F, Tedjar F, Amouzegar K, et al. Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond[J]. Materials, 2020, 13(3): 801. |
56 | Billard I, Ouadi A, Gaillard C. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding[J]. Analytical and Bioanalytical Chemistry, 2011, 400(6): 1555-1566. |
57 | Xu L, Chen C, Fu M L. Separation of cobalt and lithium from spent lithium-ion battery leach liquors by ionic liquid extraction using Cyphos IL-101[J]. Hydrometallurgy, 2020, 197: 105439. |
58 | Zhu Z W, Yoko P, Cheng C Y. Recovery of cobalt and manganese from nickel laterite leach solutions containing chloride by solvent extraction using Cyphos IL 101[J]. Hydrometallurgy, 2017, 169: 213-218. |
59 | Pagnanelli F, Moscardini E, Altimari P, et al. Cobalt products from real waste fractions of end of life lithium ion batteries[J]. Waste Management, 2016, 51: 214-221. |
60 | Zhang P W, Yokoyama T, Itabashi O, et al. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries[J]. Hydrometallurgy, 1998, 47(2/3): 259-271. |
61 | Virolainen S, Fallah Fini M, Laitinen A, et al. Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co[J]. Separation and Purification Technology, 2017, 179: 274-282. |
62 | Nan J M, Han D M, Yang M J, et al. Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries[J]. Hydrometallurgy, 2006, 84(1/2): 75-80. |
63 | Granata G, Pagnanelli F, Moscardini E, et al. Simultaneous recycling of nickel metal hydride, lithium ion and primary lithium batteries: accomplishment of European Guidelines by optimizing mechanical pre-treatment and solvent extraction operations[J]. Journal of Power Sources, 2012, 212: 205-211. |
64 | Zhang P W, Yokoyama T, Itabashi O, et al. Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries[J]. Hydrometallurgy, 1998, 50(1): 61-75. |
65 | Han K N, Kellar J J, Cross W M, et al. Opportunities and challenges for treating rare-earth elements[J]. Geosystem Engineering, 2014, 17(3): 178-194. |
66 | Swain B, Mishra C, Jeong J, et al. Separation of Co(Ⅱ) and Li(I) with Cyanex 272 using hollow fiber supported liquid membrane: a comparison with flat sheet supported liquid membrane and dispersive solvent extraction process[J]. Chemical Engineering Journal, 2015, 271: 61-70. |
67 | Darekar M, Sen N, Singh K K, et al. Liquid-liquid extraction in microchannels with Zinc-D2EHPA system[J]. Hydrometallurgy, 2014, 144/145: 54-62. |
68 | Marsousi S, Karimi-Sabet J, Moosavian M A, et al. Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics[J]. Chemical Engineering Journal, 2019, 356: 492-505. |
69 | Chen Z, Wang W T, Sang F N, et al. Fast extraction and enrichment of rare earth elements from waste water via microfluidic-based hollow droplet[J]. Separation and Purification Technology, 2017, 174: 352-361. |
70 | Hirayama Y, Hinoue M, Tokumoto H, et al. Liquid-liquid extraction and separation of cobalt and lithium ions using a slug flow microreactor[J]. Journal of Chemical Engineering of Japan, 2018, 51(3): 222-228. |
71 | Muto A, Hirayama Y, Tokumoto H, et al. Liquid-liquid extraction of lithium ions using a slug flow microreactor: effect of extraction reagent and microtube material[J]. Solvent Extraction and Ion Exchange, 2017, 35(1): 61-73. |
72 | Ceron M A, Guzman-Lucero D J, Palomeque J F, et al. Parallel microwave-assisted synthesis of ionic liquids and screening for denitrogenation of straight-Run diesel feed by liquid-liquid extraction[J]. Combinatorial Chemistry & High Throughput Screening, 2012, 15(5): 427-432. |
73 | Cui T, Zhu X P, Wu L, et al. Ultrasonic assisted dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry for determination of trace gallium in vanadium titanium magnetite[J]. Microchemical Journal, 2020, 157: 104993. |
74 | Poulsen C E, Wootton R C R, Wolff A, et al. A microfluidic platform for the rapid determination of distribution coefficients by gravity-assisted droplet-based liquid-liquid extraction[J]. Analytical Chemistry, 2015, 87(12): 6265-6270. |
75 | Kuipa P K, Hughes M A. Influence of high voltage electric fields applied across a horizontal liquid-liquid interface on the rate of metal extraction using a rotating diffusion cell[J]. Separation Science and Technology, 1999, 34(13): 2643-2661. |
76 | Saien J, Bamdadi H, Daliri S. Liquid-liquid extraction intensification with magnetite nanofluid single drops under oscillating magnetic field[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1152-1159. |
77 | 马空军, 贾殿赠, 孙文磊, 等. 物理场强化化工过程的研究进展[J]. 现代化工, 2009, 29(3): 27-31, 33. |
Ma K J, Jia D Z, Sun W L, et al. Advances in physical fields used to enhance processes of chemical engineering[J]. Modern Chemical Industry, 2009, 29(3): 27-31, 33. | |
78 | O'Brien M, Koos P, Browne D L, et al. A prototype continuous-flow liquid-liquid extraction system using open-source technology[J]. Organic & Biomolecular Chemistry, 2012, 10(35): 7031-7036. |
79 | Yang Y, Huang G Y, Xie M, et al. Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps[J]. Hydrometallurgy, 2016, 165: 358-369. |
80 | Sa Q N, Gratz E, He M N, et al. Synthesis of high performance LiNi1/3Mn1/3Co1/3O2 from lithium ion battery recovery stream[J]. Journal of Power Sources, 2015, 282: 140-145. |
81 | Yao L, Feng Y, Xi G X. A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries[J]. RSC Advances, 2015, 5(55): 44107-44114. |
82 | Sa Q N, Gratz E, Heelan J A, et al. Synthesis of diverse LiNixMnyCozO2 cathode materials from lithium ion battery recovery stream[J]. Journal of Sustainable Metallurgy, 2016, 2(3): 248-256. |
83 | Weng Y Q, Xu S M, Huang G Y, et al. Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries[J]. Journal of Hazardous Materials, 2013, 246/247: 163-172. |
84 | Zou H Y, Gratz E, Apelian D, et al. A novel method to recycle mixed cathode materials for lithium ion batteries[J]. Green Chemistry, 2013, 15(5): 1183. |
85 | Li L, Zhang X X, Chen R J, et al. Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries[J]. Journal of Power Sources, 2014, 249: 28-34. |
86 | Lee C K, Rhee K I. Preparation of LiCoO2 from spent lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1): 17-21. |
87 | Yao L, Xi Y B, Xi G X, et al. Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol-gel-hydrothermal route using spent Li-ion battery[J]. Journal of Alloys and Compounds, 2016, 680: 73-79. |
88 | Flexer V, Baspineiro C F, Galli C I. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing[J]. Science of the Total Environment, 2018, 639: 1188-1204. |
89 | Yang Y, Xu S M, He Y H. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes[J]. Waste Management, 2017, 64: 219-227. |
90 | 赵春龙, 孙峙, 郑晓洪, 等. 碳酸锂的制备及其纯化过程的研究进展[J]. 过程工程学报, 2018, 18(1): 20-28. |
Zhao C L, Sun S, Zheng X H, et al. Research progress of lithium carbonate preparation and purification process[J]. The Chinese Journal of Process Engineering, 2018, 18(1): 20-28. | |
91 | Han B, Porvali A, Lundström M, et al. Lithium recovery by precipitation from impure solutions - lithium ion battery waste[J]. Chemical Engineering & Technology, 2018, 41(6): 1205-1210. |
92 | Lu Y C, Liu Y, Zhou C, et al. Preparation of Li2CO3 nanoparticles by carbonation reaction using a microfiltration membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2014, 53(27): 11015-11020. |
93 | Liang H L, Yuan S, Shi L Y, et al. Highly-ordered microstructure and well performance of LiNi0.6Mn0.2Co0.2O2 cathode material via the continuous microfluidic synthesis[J]. Chemical Engineering Journal, 2020, 394: 124846. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[4] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[5] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[6] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[7] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[8] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[9] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[10] | 许万, 陈振斌, 张慧娟, 牛昉昉, 火婷, 刘兴盛. 线性温敏性聚合物嵌段调控的 |
[11] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
[12] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[13] | 马语峻, 刘向军. 多孔陶瓷膜烟气水分回收理论与模型研究[J]. 化工学报, 2022, 73(9): 4103-4112. |
[14] | 罗欣宜, 冯超, 刘晶, 乔瑜. 污泥不同热处理工艺产物磷的浸出回收实验研究[J]. 化工学报, 2022, 73(9): 4034-4044. |
[15] | 戚新刚, 路利波, 陈渝楠, 葛志伟, 郭烈锦. 造纸黑液超临界水气化制氢与高附加值化学品回收研究进展[J]. 化工学报, 2022, 73(8): 3338-3354. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 859
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1180
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||