化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3394-3405.DOI: 10.11949/0438-1157.20220265
收稿日期:
2022-03-01
修回日期:
2022-07-14
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
樊铖,孙克宁
作者简介:
杨静(1997—),女,硕士研究生,3120211315@bit.edu.cn
基金资助:
Jing YANG(), Zhenkang LIN, Jun TANG, Cheng FAN(), Kening SUN()
Received:
2022-03-01
Revised:
2022-07-14
Online:
2022-08-05
Published:
2022-09-06
Contact:
Cheng FAN, Kening SUN
摘要:
高比能的锂电池系统广泛应用于储能与动力电源,电池系统的故障诊断技术是其安全、长效工作的重要保障。但锂电池化学性质特殊,故障类型难以识别,增加了电池系统的安全风险。为提高故障诊断与类型识别的准确性,提高电池系统安全性,需要认识发生不同故障时的电、热、化学特征。综述了电池系统的故障类型,并系统地总结和分析了电池系统单电池、连接、传感器等故障的电、热、化学信号特征。提出了内部电化学参数是可靠判别传感器故障与各种电池早期故障的关键特征,电化学阻抗谱是获取内部特征参数的有效方法;从电压波动性出发,电流与电压相关系数是判别传感器故障与连接故障的关键;此外,电池系统的特殊连接结构也是区分不同故障的重要手段。
中图分类号:
杨静, 林振康, 汤君, 樊铖, 孙克宁. 电池系统的故障特征以及多故障的诊断与识别[J]. 化工学报, 2022, 73(8): 3394-3405.
Jing YANG, Zhenkang LIN, Jun TANG, Cheng FAN, Kening SUN. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems[J]. CIESC Journal, 2022, 73(8): 3394-3405.
年份 | 数量(例) | 起火场景 | 数量(例) | 起火原因 |
---|---|---|---|---|
2017[ | 18 | 行驶中自燃 | 2 | 电池系统 |
停置时自燃 | 3 | |||
充电 | 3 | |||
外部引燃 | 1 | 人为因素 | ||
碰撞 | 5 | |||
电池箱浸水 | 2 | 外部因素 | ||
充电设备故障 | 2 | |||
2018[ | 22 | 行驶中自燃 | 4 | 电池系统 |
停置时自燃 | 3 | |||
充电 | 12 | |||
改装导致起火 | 1 | 人为因素 | ||
电器元件短路 | 1 | 外部因素 | ||
电池箱浸水 | 1 | |||
2019[ | 19 | 行驶中自燃 | 8 | 电池系统 |
停置时自燃 | 5 | |||
充电 | 6 | |||
2020[ | 72 | 行驶中自燃 | 19 | 电池系统 |
停置时自燃 | 31 | |||
充电 | 10 | |||
碰撞 | 12 | 人为因素 | ||
2021上半年[ | 34 | 行驶中自燃 | 20 | 电池系统 |
停置时自燃 | 4 | |||
充电 | 10 |
表1 国内新能源汽车起火事件统计
Table 1 Statistics on domestic fire incidents of new energy vehicles
年份 | 数量(例) | 起火场景 | 数量(例) | 起火原因 |
---|---|---|---|---|
2017[ | 18 | 行驶中自燃 | 2 | 电池系统 |
停置时自燃 | 3 | |||
充电 | 3 | |||
外部引燃 | 1 | 人为因素 | ||
碰撞 | 5 | |||
电池箱浸水 | 2 | 外部因素 | ||
充电设备故障 | 2 | |||
2018[ | 22 | 行驶中自燃 | 4 | 电池系统 |
停置时自燃 | 3 | |||
充电 | 12 | |||
改装导致起火 | 1 | 人为因素 | ||
电器元件短路 | 1 | 外部因素 | ||
电池箱浸水 | 1 | |||
2019[ | 19 | 行驶中自燃 | 8 | 电池系统 |
停置时自燃 | 5 | |||
充电 | 6 | |||
2020[ | 72 | 行驶中自燃 | 19 | 电池系统 |
停置时自燃 | 31 | |||
充电 | 10 | |||
碰撞 | 12 | 人为因素 | ||
2021上半年[ | 34 | 行驶中自燃 | 20 | 电池系统 |
停置时自燃 | 4 | |||
充电 | 10 |
传感器故障类型 | 故障特征 | 诊断方法 | 文献 | 特点 | |||
---|---|---|---|---|---|---|---|
计算量 | 灵敏度 | 鲁棒性 | |||||
噪声 | 模型 | ||||||
电压传感器 | 电压 | 容错电压测量方法 | [ | 中等 | 中等 | 差 | 良好 |
基于基尔霍夫定律 | [ | 小 | 中等 | 差 | 差 | ||
结构分析理论 | [ | 小 | 中等 | 差 | 差 | ||
非线性奇偶校验方程的方法 | [ | 中等 | 低 | 差 | 差 | ||
自适应滑模观测器 | [ | 中等 | 中等 | 良好 | 差 | ||
扩展卡尔曼滤波器 | [ | 中等 | 中等 | 良好 | 差 | ||
自适应卡尔曼滤波器 | [ | 大 | 中等 | 良好 | 差 | ||
SOC | 结构分析理论 | [ | 小 | 中等 | 差 | 差 | |
无迹卡尔曼滤波器 | [ | 中等 | 差 | 差 | 差 | ||
电流传感器 | 电流 | 基于基尔霍夫定律 | [ | 小 | 中等 | 差 | 差 |
结构分析理论 | [ | 小 | 中等 | 差 | 差 | ||
非线性奇偶校验方程的方法 | [ | 中等 | 低 | 差 | 差 | ||
自适应滑模观测器 | [ | 中等 | 中等 | 良好 | 差 | ||
扩展卡尔曼滤波器 | [ | 中等 | 中等 | 良好 | 差 | ||
自适应卡尔曼滤波器 | [ | 大 | 中等 | 良好 | 差 | ||
结构分析理论 | [ | 小 | 中等 | 差 | 差 | ||
无迹卡尔曼滤波器 | [ | 中等 | 差 | 差 | 差 | ||
SOC | 结构分析理论 | [ | 小 | 中等 | 差 | 差 | |
无迹卡尔曼滤波器 | [ | 中等 | 差 | 差 | 差 | ||
基于比例积分观测器 | [ | 小 | 良好 | 差 | 差 | ||
温度传感器 | 温度 | 基于基尔霍夫定律 | [ | 小 | 中等 | 差 | 差 |
结构分析理论 | [ | 小 | 中等 | 差 | 差 | ||
非线性奇偶校验方程的方法 | [ | 中等 | 低 | 差 | 差 | ||
自适应滑模观测器 | [ | 中等 | 中等 | 良好 | 差 |
表2 故障类型及诊断方法
Table 2 Fault type and diagnosis method
传感器故障类型 | 故障特征 | 诊断方法 | 文献 | 特点 | |||
---|---|---|---|---|---|---|---|
计算量 | 灵敏度 | 鲁棒性 | |||||
噪声 | 模型 | ||||||
电压传感器 | 电压 | 容错电压测量方法 | [ | 中等 | 中等 | 差 | 良好 |
基于基尔霍夫定律 | [ | 小 | 中等 | 差 | 差 | ||
结构分析理论 | [ | 小 | 中等 | 差 | 差 | ||
非线性奇偶校验方程的方法 | [ | 中等 | 低 | 差 | 差 | ||
自适应滑模观测器 | [ | 中等 | 中等 | 良好 | 差 | ||
扩展卡尔曼滤波器 | [ | 中等 | 中等 | 良好 | 差 | ||
自适应卡尔曼滤波器 | [ | 大 | 中等 | 良好 | 差 | ||
SOC | 结构分析理论 | [ | 小 | 中等 | 差 | 差 | |
无迹卡尔曼滤波器 | [ | 中等 | 差 | 差 | 差 | ||
电流传感器 | 电流 | 基于基尔霍夫定律 | [ | 小 | 中等 | 差 | 差 |
结构分析理论 | [ | 小 | 中等 | 差 | 差 | ||
非线性奇偶校验方程的方法 | [ | 中等 | 低 | 差 | 差 | ||
自适应滑模观测器 | [ | 中等 | 中等 | 良好 | 差 | ||
扩展卡尔曼滤波器 | [ | 中等 | 中等 | 良好 | 差 | ||
自适应卡尔曼滤波器 | [ | 大 | 中等 | 良好 | 差 | ||
结构分析理论 | [ | 小 | 中等 | 差 | 差 | ||
无迹卡尔曼滤波器 | [ | 中等 | 差 | 差 | 差 | ||
SOC | 结构分析理论 | [ | 小 | 中等 | 差 | 差 | |
无迹卡尔曼滤波器 | [ | 中等 | 差 | 差 | 差 | ||
基于比例积分观测器 | [ | 小 | 良好 | 差 | 差 | ||
温度传感器 | 温度 | 基于基尔霍夫定律 | [ | 小 | 中等 | 差 | 差 |
结构分析理论 | [ | 小 | 中等 | 差 | 差 | ||
非线性奇偶校验方程的方法 | [ | 中等 | 低 | 差 | 差 | ||
自适应滑模观测器 | [ | 中等 | 中等 | 良好 | 差 |
1 | Kamal E, Adouane L. Hierarchical energy optimization strategy and its integrated reliable battery fault management for hybrid hydraulic-electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 3740-3754. |
2 | Kurzawski A, Torres-Castro L, Shurtz R, et al. Predicting cell-to-cell failure propagation and limits of propagation in lithium-ion cell stacks[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4737-4745. |
3 | 陈泽宇, 熊瑞, 孙逢春. 电动汽车电池安全事故分析与研究现状[J]. 机械工程学报, 2019, 55(24): 93-114. |
Chen Z Y, Xiong R, Sun F C.Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering[J]. Journal of Mechanical Engineering, 2019, 55(24): 93-114. | |
4 | 游煜城, 张润樾, 黄泽平, 等. 动力电池热失控对新能源汽车的危害[J]. 科学技术创新, 2020(31): 170-172. |
You Y C, Zhang R Y, Huang Z P, et al. Harm of thermal runaway of power battery to new energy vehicle[J]. Scientific and Technological Innovation, 2020(31): 170-172. | |
5 | 张震乾, 董红磊, 谢乐琼, 等. 新能源汽车安全事故的原因和召回政策研究[J]. 电池工业, 2022, 26(2): 90-100. |
Zhang Z Q, Dong H L, Xie L Q, et al. Research on the causes of safety accident and recall policy of new energy vehicles[J]. Chinese Battery Industry, 2022, 26(2): 90-100. | |
6 | 电动汽车用户联盟. 2020年新能源汽车起火报告[EB/OL]. 2021-4-8[2022-5-25]. . |
Electric Vehicle Users Alliance. 2020 new energy vehicle fire report[EB/OL]. 2021-4-8[2022-5-25]. . | |
7 | 中信证券. 国安达-价值投资分析报告[EB/OL]. 2022-5-17[2022-5-25]. . |
CITICS. Guoanda - Value investment analysis report[EB/OL]. 2022-5-17[2022-5-25]. . | |
8 | El Mejdoubi A, Chaoui H, Gualous H, et al. Lithium-ion batteries health prognosis considering aging conditions[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6834-6844. |
9 | Zhang K, Hu X S, Liu Y G, et al. Multi-fault detection and isolation for lithium-ion battery systems[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 971-989. |
10 | Hu X S, Zhang K, Liu K L, et al. Advanced fault diagnosis for lithium-ion battery systems: a review of fault mechanisms, fault features, and diagnosis procedures[J]. IEEE Industrial Electronics Magazine, 2020, 14(3): 65-91. |
11 | 崔锦, 石川, 赵金保. 机械压力对锂电池性能影响的研究进展[J]. 化工学报, 2021, 72(7): 3511-3523. |
Cui J, Shi C, Zhao J B. Research progress on the effect of mechanical pressure on the performance of lithium batteries[J]. CIESC Journal, 2021, 72(7): 3511-3523. | |
12 | 南皓雄, 赵辰孜, 袁洪, 等. 固态金属锂电池研究进展:外部压力和内部应力的影响[J]. 化工学报, 2021, 72(1): 61-70. |
Nan H X, Zhao C Z, Yuan H, et al. Recent advances in solid-state lithium metal batteries: the role of external pressure and internal stress[J]. CIESC Journal, 2021, 72(1): 61-70. | |
13 | 陈怡沁, 许于, 周静红, 等. 锂离子电池异构建模及内部传质机理探究:粒径分布的影响[J]. 化工学报, 2021, 72(2): 1078-1088. |
Chen Y Q, Xu Y, Zhou J H, et al. Heterogeneous modeling and internal mass transfer mechanism of lithium-ion batteries: effect of particle size distribution[J]. CIESC Journal, 2021, 72(2): 1078-1088. | |
14 | Brand M J, Kolp E I, Berg P, et al. Electrical resistances of soldered battery cell connections[J]. Journal of Energy Storage, 2017, 12: 45-54. |
15 | Zhang C P, Jiang Y, Jiang J C, et al. Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries[J]. Applied Energy, 2017, 207: 510-519. |
16 | Wu B, Yufit V, Marinescu M, et al. Coupled thermal-electrochemical modelling of uneven heat generation in lithium-ion battery packs[J]. Journal of Power Sources, 2013, 243: 544-554. |
17 | Offer G J, Yufit V, Howey D A, et al. Module design and fault diagnosis in electric vehicle batteries[J]. Journal of Power Sources, 2012, 206: 383-392. |
18 | He H W, Xiong R, Zhao K, et al. Energy management strategy research on a hybrid power system by hardware-in-loop experiments[J]. Applied Energy, 2013, 112: 1311-1317. |
19 | Cordoba-Arenas A, Onori S, Rizzoni G. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management[J]. Journal of Power Sources, 2015, 279: 791-808. |
20 | Naguib M, Kollmeyer P, Emadi A. Lithium-ion battery pack robust state of charge estimation, cell inconsistency, and balancing: review[J]. IEEE Access, 9: 50570-50582. |
21 | Shen X, Zhang X Q, Ding F, et al. Advanced electrode materials in lithium batteries: retrospect and prospect[J]. Energy Material Advances, 2021, 2021: 1-15. |
22 | Zhang J J, Shkrob I A, Assary R S, et al. Dual overcharge protection and solid electrolyte interphase-improving action in Li-ion cells containing a bis-annulated dialkoxyarene electrolyte additive[J]. Journal of Power Sources, 2018, 378: 264-267. |
23 | Huang T, Zheng X Z, Wang W G, et al. (2-Chloro-4-methoxy)-phenoxy pentafluorocyclotriphosphazene as a safety additive for lithium-ion batteries[J]. Materials Chemistry and Physics, 2017, 196: 310-314. |
24 | Chen Z Y, Xiong R, Sun F C. Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(24): 93. |
25 | 刘力硕, 张明轩, 卢兰光, 等. 锂离子电池内短路机理与检测研究进展[J]. 储能科学与技术, 2018, 7(6): 1003-1015. |
Liu L S, Zhang M X, Lu L G, et al. Recent progress on mechanism and detection of internal short circuit in lithium-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1003-1015. | |
26 | Potdevin H. Insulation monitoring in high voltage systems for hybrid and electric vehicles[J]. ATZelektronik Worldwide, 2009, 4(6): 28-31. |
27 | Fu X F, Zhou S J, Zheng Y J, et al. Study on drive battery high voltage safety system for hybrid electric vehicle[C]//Proceedings of the FISITA 2012 World Automotive Congress. 2013: 721-728. |
28 | Wang Y J, Tian J Q, Chen Z H, et al. Model based insulation fault diagnosis for lithium-ion battery pack in electric vehicles[J]. Measurement, 2019, 131: 443-451. |
29 | Moura S J, Chaturvedi N A, Krstić M. Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model[J]. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(1): 011015. |
30 | Hu X S, Li S B, Peng H E. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198: 359-367. |
31 | Wang Y J, Yang D, Zhang X, et al. Probability based remaining capacity estimation using data-driven and neural network model[J]. Journal of Power Sources, 2016, 315: 199-208. |
32 | Xiong R, Yu Q Q, Shen W X, et al. A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9709-9718. |
33 | Zheng Y J, Han X B, Lu L G, et al. Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles[J]. Journal of Power Sources, 2013, 223: 136-146. |
34 | Zhu C, Li X H, Song L J, et al. Development of a theoretically based thermal model for lithium ion battery pack[J]. Journal of Power Sources, 2013, 223: 155-164. |
35 | Li D L, Wang Y, Wang J X, et al. Recent advances in sensor fault diagnosis: a review[J]. Sensors and Actuators A: Physical, 2020, 309: 111990. |
36 | Zhang T S, Gao Q, Wang G H, et al. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process[J]. Applied Thermal Engineering, 2017, 116: 655-662. |
37 | Zou H M, Jiang B, Wang Q, et al. Performance analysis of a heat pump air conditioning system coupling with battery cooling for electric vehicles[J]. Energy Procedia, 2014, 61: 891-894. |
38 | Wei Y Y, Agelin-Chaab M. Experimental study of a thermal cooling technique for cylindrical batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2020, 17(2): 021102. |
39 | Xiong R, Sun W Z, Yu Q Q, et al. Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles[J]. Applied Energy, 2020, 279: 115855. |
40 | Feng X N, Pan Y, He X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18: 26-39. |
41 | Chen Z Y, Xiong R, Tian J P, et al. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles[J]. Applied Energy, 2016, 184: 365-374. |
42 | Yang R X, Xiong R, He H W, et al. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application[J]. Journal of Cleaner Production, 2018, 187: 950-959. |
43 | Yang R X, Xiong R, Ma S X, et al. Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks[J]. Applied Energy, 2020, 260: 114253. |
44 | Chen Z Y, Zhang B, Xiong R, et al. Electro-thermal coupling model of lithium-ion batteries under external short circuit[J]. Applied Energy, 2021, 293: 116910. |
45 | 韩冰海, 王东梅, 李世云. 一种基于直流内阻的电池组连接可靠性的检测方法[J]. 电源技术, 2017, 41(7): 981-983. |
Han B H, Wang D M, Li S Y. Research on battery connection reliability based on DC internal resistance[J]. Chinese Journal of Power Sources, 2017, 41(7): 981-983. | |
46 | Yao L, Wang Z P, Ma J. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles[J]. Journal of Power Sources, 2015, 293: 548-561. |
47 | Sun Z Y, Liu P, Wang Z P. Real-time fault diagnosis method of battery system based on Shannon entropy[J]. Energy Procedia, 2017, 105: 2354-2359. |
48 | Liu Z T, He H W. Model-based sensor fault diagnosis of a lithium-ion battery in electric vehicles[J]. Energies, 2015, 8(7): 6509-6527. |
49 | He H W, Liu Z T, Hua Y. Adaptive extended Kalman filter based fault detection and isolation for a lithium-ion battery pack[J]. Energy Procedia, 2015, 75: 1950-1955. |
50 | Liu Z T, He H W. Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[J]. Applied Energy, 2017, 185: 2033-2044. |
51 | Lombardi W, Zarudniev M, Lesecq S, et al. Sensors fault diagnosis for a BMS[C]//2014 European Control Conference (ECC). Strasbourg, France: IEEE, 2014: 952-957. |
52 | Liu Z T, Ahmed Q, Rizzoni G, et al. Fault detection and isolation for lithium-ion battery system using structural analysis and sequential residual generation[C]//Proceedings of ASME 2014 Dynamic Systems and Control Conference. San Antonio, Texas, USA, 2014. |
53 | Liu Z T, Ahmed Q, Zhang J Y, et al. Structural analysis based sensors fault detection and isolation of cylindrical lithium-ion batteries in automotive applications[J]. Control Engineering Practice, 2016, 52: 46-58. |
54 | Marcicki J, Onori S, Rizzoni G. Nonlinear fault detection and isolation for a lithium-ion battery management system[C]//Proceedings of ASME 2010 Dynamic Systems and Control Conference. Cambridge, Massachusetts, USA, 2011: 607-614. |
55 | Dey S, Mohon S, Pisu P, et al. Sensor fault detection, isolation, and estimation in lithium-ion batteries[J]. IEEE Transactions on Control Systems Technology, 2016, 24(6): 2141-2149. |
56 | Shu X, Li G, Zhang Y J, et al. Stage of charge estimation of lithium-ion battery packs based on improved cubature Kalman filter with long short-term memory model[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1271-1284. |
57 | Lin T T, Chen Z Q, Zheng C W, et al. Fault diagnosis of lithium-ion battery pack based on hybrid system and dual extended Kalman filter algorithm[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 26-36. |
58 | Yokotani K. Battery system and method for detecting internal short circuit in battery system: US8643332[P]. 2014-02-04. |
59 | Xia B, Shang Y L, Nguyen T, et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337: 1-10. |
60 | Zhao Y, Liu P, Wang Z P, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207: 354-362. |
61 | Schmid M, Kleiner J, Endisch C. Early detection of internal short circuits in series-connected battery packs based on nonlinear process monitoring[J]. Journal of Energy Storage, 2022, 48: 103732. |
62 | Feng X N, Weng C H, Ouyang M G, et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161: 168-180. |
63 | Feng X, He X, Lu L, et al. Analysis on the fault features for internal short circuit detection using an electrochemical-thermal coupled model[J]. Journal of the Electrochemical Society, 2018, 165(2): A155-A167. |
64 | Gao W K, Zheng Y J, Ouyang M G, et al. Micro-short-circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 2132-2142. |
65 | Zhang Z D, Kong X D, Zheng Y J, et al. Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters[J]. Energy, 2019, 166: 1013-1024. |
66 | Kong X D, Zheng Y J, Ouyang M G, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources, 2018, 395: 358-368. |
67 | Kim J. Discrete wavelet transform-based feature extraction of experimental voltage signal for Li-ion cell consistency[J]. IEEE Transactions on Vehicular Technology, 2016, 65(3): 1150-1161. |
68 | 于申军, 周永超, 李贺, 等. 内阻差异对锂离子电池组安全性能的影响[J]. 化工学报, 2010, 61(11): 2960-2964. |
Yu S J, Zhou Y C, Li H, et al. Effect of internal resistance difference on safety performance of lithium-ion battery pack[J]. CIESC Journal, 2010, 61(11): 2960-2964. | |
69 | Duan B, Li Z Y, Gu P W, et al. Evaluation of battery inconsistency based on information entropy[J]. Journal of Energy Storage, 2018, 16: 160-166. |
70 | Kim T, Makwana D, Adhikaree A, et al. Cloud-based battery condition monitoring and fault diagnosis platform for large-scale lithium-ion battery energy storage systems[J]. Energies, 2018, 11(1): 125. |
71 | Li X Y, Wang Z P. A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles[J]. Measurement, 2018, 116: 402-411. |
72 | Wang Z P, Hong J C, Liu P, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy, 2017, 196: 289-302. |
73 | Hashemi S R, Esmaeeli R, Nazari A, et al. A fast diagnosis methodology for typical faults of a lithium-ion battery in electric and hybrid electric aircraft[J]. Journal of Electrochemical Energy Conversion and Storage, 2020, 17(1): 011011. |
74 | Wu C, Zhu C B, Ge Y W. A new fault diagnosis and prognosis technology for high-power lithium-ion battery[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1533-1538. |
75 | Xia B, Mi C. A fault-tolerant voltage measurement method for series connected battery packs[J]. Journal of Power Sources, 2016, 308: 83-96. |
76 | Xia B, Nguyen T, Yang J F, et al. The improved interleaved voltage measurement method for series connected battery packs[J]. Journal of Power Sources, 2016, 334: 12-22. |
77 | Ma M N, Duan Q L, Zhao C P, et al. Faulty characteristics and identification of increased connecting and internal resistance in parallel-connected lithium-ion battery pack for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10797-10808. |
78 | Kang Y Z, Duan B, Shang Y L, et al. Multi-fault online detection method for series-connected battery packs[C]//2017 Chinese Automation Congress (CAC). Jinan, China: IEEE, 2017: 235-240. |
79 | Kang Y Z, Duan B, Zhou Z K, et al. A multi-fault diagnostic method based on an interleaved voltage measurement topology for series connected battery packs[J]. Journal of Power Sources, 2019, 417: 132-144. |
80 | Kang Y Z, Duan B, Zhou Z K, et al. Online multi-fault detection and diagnosis for battery packs in electric vehicles[J]. Applied Energy, 2020, 259: 114170. |
81 | Ma G J, Xu S P, Cheng C. Fault detection of lithium-ion battery packs with a graph-based method[J]. Journal of Energy Storage, 2021, 43: 103209. |
[1] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[2] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[3] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[4] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[5] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[6] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[7] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
[8] | 史克年, 郑景元, 钱宇, 杨思宇. 基于马尔可夫链的蒸汽动力系统两阶段随机规划[J]. 化工学报, 2023, 74(2): 807-817. |
[9] | 陈家辉, 杨鑫泽, 陈顾中, 宋震, 漆志文. 以离子液体密度为例的分子性质预测模型建模方法探讨[J]. 化工学报, 2023, 74(2): 630-641. |
[10] | 周新杰, 王建林, 艾兴聪, 随恩光, 王汝童. 基于IDPC-RVM的多模态间歇过程质量变量在线预测[J]. 化工学报, 2022, 73(7): 3120-3130. |
[11] | 任嘉辉, 刘豫, 刘朝, 刘浪, 李莹. 基于分子指纹和拓扑指数的工质临界温度理论预测[J]. 化工学报, 2022, 73(4): 1493-1500. |
[12] | 吴子睿, 孙瑞, 石凌峰, 田华, 王轩, 舒歌群. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492. |
[13] | 汪森林, 李照志, 邵应娟, 钟文琪. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082. |
[14] | 刘立邦, 杨颂, 王志坚, 贺欣欣, 赵文磊, 刘守军, 杜文广, 米杰. 基于改进WOA-LSTM的焦炭质量预测[J]. 化工学报, 2022, 73(3): 1291-1299. |
[15] | 许雄飞, 刘鹏龙, 张玮, 许鑫, 张侃, 王俊文. 两段法固定床甲醇制芳烃产物预测多元非线性回归模型[J]. 化工学报, 2022, 73(2): 838-846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||