1 |
刘大钧, 汪家权. 我国电解铝行业现状分析及环保优化发展的对策建议[J]. 轻金属, 2014(9): 9-13.
|
|
Liu D J, Wang J Q. Status analysis on aluminum industry in China and countermeasures of optimization development of environmental protection[J]. Light Metals, 2014(9): 9-13.
|
2 |
高文义, 张文章. 电解铝行业事故发生的原因探析[J]. 世界有色金属, 2022(2): 105-107.
|
|
Gao W Y, Zhang W Z. Analysis on the causes of electrolytic aluminum industry accidents[J]. World Nonferrous Metals, 2022(2): 105-107.
|
3 |
林燕, 周孑民, 周萍. 大型预焙铝电解槽槽膛内形的在线仿真[J]. 湖南冶金, 2006, 34(6): 8-10, 23.
|
|
Lin Y, Zhou J M, Zhou P. The on-line simulation of the freeze profile of large scale prebaked aluminum electrolytic cells[J]. Hunan Metallurgy, 2006, 34(6): 8-10, 23.
|
4 |
李劼, 王志刚, 赖延清, 等. 5 kA惰性阳极铝电解槽槽膛内形及热平衡[J]. 过程工程学报, 2008, 8(S1): 54-58.
|
|
Li J, Wang Z G, Lai Y Q, et al. Cell profile and heat balance of 5 kA inert anode aluminum reduction cell[J]. The Chinese Journal of Process Engineering, 2008, 8(S1): 54-58.
|
5 |
邓胜祥, 马和平, 谢青松, 等. 预焙铝电解槽在线仿真槽况诊断专家系统研究[J]. 计算机测量与控制, 2011, 19(8): 1850-1852.
|
|
Deng S X, Ma H P, Xie Q S, et al. A study of on-line simulation and cell condition diagnosis expert system of prebaked cell for aluminum-reduction[J]. Computer Measurement & Control, 2011, 19(8): 1850-1852.
|
6 |
尹刚, 陈根, 何文, 等. 基于SDAE和随机森林的铝电解槽阳极效应预测方法研究[J]. 稀有金属, 2021, 45(4): 428-436.
|
|
Yin G, Chen G, He W, et al. A method for anode effect prediction of aluminium electrolysis cell based on SDAE and random forest[J]. Chinese Journal of Rare Metals, 2021, 45(4): 428-436.
|
7 |
Zhou K B, Zhang Z X, Liu J, et al. Anode effect prediction based on a singular value thresholding and extreme gradient boosting approach[J]. Measurement Science and Technology, 2019, 30(1): 015104.
|
8 |
曾水平, 崔福伟, 邹爱笑. 300 kA预焙阳极铝电解槽阴极状况的诊断[J]. 轻金属, 2017(1): 25-30.
|
|
Zeng S P, Cui F W, Zou A X. The diagnosis of cathodes of 300 kA prebaked anode aluminum reduction pot[J]. Light Metals, 2017(1): 25-30.
|
9 |
李浩然. 基于数据驱动的铝电解槽况评判与故障诊断方法研究[D]. 南宁: 广西大学, 2022.
|
|
Li H R. Research on cell condition evaluation and fault diagnosis method of aluminum electrolysis based on data drive[D]. Nanning: Guangxi University, 2022.
|
10 |
易军, 李太福, 田应甫, 等. 基于对称Alpha稳定分布概率神经网络的铝电解槽况诊断[J]. 化工学报, 2012, 63(10): 3196-3201.
|
|
Yi J, Li T F, Tian Y F, et al. Diagnosis of status of aluminum reduction cells based on symmetric Alpha-stable probabilistic distribution neural network[J]. CIESC Journal, 2012, 63(10): 3196-3201.
|
11 |
Lei Y X, Chen X F, Min M C, et al. A semi-supervised Laplacian extreme learning machine and feature fusion with CNN for industrial superheat identification[J]. Neurocomputing, 2020, 381: 186-195.
|
12 |
Gao T H, Zhang K, Shi H T, et al. A two-stage classifier switchable aluminum electrolysis fault diagnosis method[J]. Transactions of the Institute of Measurement and Control, 2022, 44(8): 1708-1720.
|
13 |
李贺松, 殷小宝, 黄涌波, 等. 基于阳极电流波动的铝电解槽槽况诊断系统[J]. 化工学报, 2011, 62(6): 1770-1777.
|
|
Li H S, Yin X B, Huang Y B, et al. Diagnosis system of different status of aluminum reduction cells based on anode current fluctuation[J]. CIESC Journal, 2011, 62(6): 1770-1777.
|
14 |
尹刚, 向冬梅, 王民, 等. 基于数据驱动的铝电解槽剩余寿命预测方法研究[J]. 稀有金属, 2023, 47(2): 273-280.
|
|
Yin G, Xiang D M, Wang M, et al. Prediction method of remaining life of aluminum reduction cell based on data drive[J]. Chinese Journal of Rare Metals, 2023, 47(2): 273-280.
|
15 |
何葵东, 王卫玉, 金艳, 等. 基于CNN-SVM的水电机组智能故障诊断方法研究[J]. 水电能源科学, 2023, 41(4): 207-210, 215.
|
|
He K D, Wang W Y, Jin Y, et al. Research on intelligent fault diagnosis method of hydroelectric generating unit based on CNN-SVM[J]. Water Resources and Power, 2023, 41(4): 207-210, 215.
|
16 |
Zhang J X, Xu Y Y, Chen H X, et al. A novel building heat pump system semi-supervised fault detection and diagnosis method under small and imbalanced data[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106316.
|
17 |
Du J G. Research on small sample nonlinear cointegration test and modeling based on the LS-SVM optimized by PSO[J]. Complexity, 2022, 2022:1-11.
|
18 |
Chi M M, Feng R, Bruzzone L. Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem[J]. Advances in Space Research, 2008, 41(11): 1793-1799.
|
19 |
Jolliffe I T. Principal Component Analysis[M]. 2nd ed. New York: Springer-Verlag, 2002.
|
20 |
薄青红, 刘光定, 张明, 等. 基于PCA和GA-SVM联合模型的数控转台升降系统故障诊断[J]. 机械设计与研究, 2022, 38(5): 221-224.
|
|
Bo Q H, Liu G D, Zhang M, et al. Fault diagnosis of NC turntable lifting system based on PCA and GA-SVM combined model[J]. Machine Design & Research, 2022, 38(5): 221-224.
|
21 |
吴建宁, 林秋婷, 伍滨. 基于核主成分分析的相关向量机人体动作分类新型模型[J]. 中国生物医学工程学报, 2022, 41(6): 641-649.
|
|
Wu J N, Lin Q T, Wu B. A novel KPCA-Based RVM model for human activity classification[J]. Chinese Journal of Biomedical Engineering, 2022, 41(6): 641-649.
|
22 |
Wen L Y, Zhang X M, Li Q F, et al. KGA: integrating KPCA and GAN for microbial data augmentation[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(4): 1427-1444.
|
23 |
Schölkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319.
|
24 |
Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
|
25 |
Xue J K, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
|
26 |
Tuerxun W, Xu C, Guo H Y, et al. Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm[J]. IEEE Access, 2021, 9: 69307-69315.
|
27 |
Zhang F, Sun W L, Wang H W, et al. Fault diagnosis of a wind turbine gearbox based on improved variational mode algorithm and information entropy[J]. Entropy, 2021, 23(7): 794.
|
28 |
马晨佩, 李明辉, 巩强令, 等. 基于麻雀搜索算法优化支持向量机的滚动轴承故障诊断[J]. 科学技术与工程, 2021, 21(10): 4025-4029.
|
|
Ma C P, Li M H, Gong Q L, et al. Fault diagnosis of rolling bearing based on sparrow search algorithm optimized support vector machine[J]. Science Technology and Engineering, 2021, 21(10): 4025-4029.
|
29 |
刘业翔, 李劼. 现代铝电解[M]. 北京: 冶金工业出版社, 2008: 137.
|
|
Liu Y X, Li J. Modern Aluminum Electrolysis[M]. Beijing: Metallurgical Industry Press, 2008: 137.
|
30 |
郭海东. 铝电解槽槽膛内型影响因素分析及生产实践[J]. 材料与冶金学报, 2010, 9(S1): 59-62.
|
|
Guo H D. Analysis and production practice of influencing factors on the internal profile of aluminum reduction cell[J]. Journal of Materials and Metallurgy, 2010, 9(S1): 59-62.
|
31 |
王进录, 施哲, 丁吉林, 等. 铝电解槽破损判定标准的分析与探讨[J]. 轻金属, 2011(8): 39-41.
|
|
Wang J L, Shi Z, Ding J L, et al. Analysis and discussion for the criterion of the damaged aluminium electrolysis cell[J]. Light Metals, 2011(8): 39-41.
|
32 |
焦庆国, 周云峰, 李昌林, 等. 500 kA铝电解槽早期破损剖析[J]. 有色金属(冶炼部分), 2020(8): 51-55, 67.
|
|
Jiao Q G, Zhou Y F, Li C L, et al. Analysis on early damage of 500 kA electrolytic cell[J]. Nonferrous Metals (Extractive Metallurgy), 2020(8): 51-55, 67.
|