化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5581-5591.DOI: 10.11949/0438-1157.20221221
黄顺进1(), 张丽1,2, 颜井冲1(
), 王志刚3, 雷智平1, 李占库1, 任世彪1, 王知彩1, 水恒福1
收稿日期:
2022-09-07
修回日期:
2022-11-09
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
颜井冲
作者简介:
黄顺进(1998—),男,硕士研究生,hsj18756014188@163.com
基金资助:
Shunjin HUANG1(), Li ZHANG1,2, Jingchong YAN1(
), Zhigang WANG3, Zhiping LEI1, Zhanku LI1, Shibiao REN1, Zhicai WANG1, Hengfu SHUI1
Received:
2022-09-07
Revised:
2022-11-09
Online:
2022-12-05
Published:
2023-01-17
Contact:
Jingchong YAN
摘要:
结渣和沾污是高碱煤燃烧锅炉中普遍存在的难题。同时,源于采煤和洗煤的大量固废煤矸石出于经济和生态考虑亦须实现减量化处理和资源化利用。基于此,通过掺烧高碱煤与煤矸石抑制煤灰沾污和结渣发生以及实现煤矸石的资源化利用,同时考察掺烧过程中污染气体(SO2和NO)的释放及减排行为。结果表明,高碱煤与煤矸石静态的掺烧反应服从三维扩散模型,在一定比例下掺烧反应活化能低于单一燃料燃烧的活化能。掺烧过程中焦炭和CO可还原NO,同时灰分中过渡金属组分可促进NO原位减排,而SO2的减排效果很大程度上取决于两燃料的掺烧比例及其灰分组成。掺烧过程中碱金属有效固留于灰渣中,从而降低煤灰沾污和结渣倾向,而碱土金属(Ca,Mg等)可同时与灰分组成中的硅铝及气相中SO2发生竞争反应。此外,通过改变掺烧煤矸石矿物组成可调节灰渣组成及熔融温度。本研究结果可为通过掺烧高碱煤与煤矸石来缓解锅炉沾污和结渣难题提供科学参考。
中图分类号:
黄顺进, 张丽, 颜井冲, 王志刚, 雷智平, 李占库, 任世彪, 王知彩, 水恒福. 高碱煤与煤矸石掺烧SO2和NO减排及结渣抑制研究[J]. 化工学报, 2022, 73(12): 5581-5591.
Shunjin HUANG, Li ZHANG, Jingchong YAN, Zhigang WANG, Zhiping LEI, Zhanku LI, Shibiao REN, Zhicai WANG, Hengfu SHUI. Investigation on cofiring high-alkali coal with coal gangues: SO2, NO reduction and ash slagging inhibition[J]. CIESC Journal, 2022, 73(12): 5581-5591.
样品 | 工业分析/%(质量,ad) | 元素分析/%(质量,daf) | ||||||
---|---|---|---|---|---|---|---|---|
M | Ash | VM | FC | C | H | O① | N | |
HM | 16 | 5.4 | 40.8 | 37.8 | 76.87 | 6.01 | 15.65 | 1.12 |
ATB | 1.3 | 59.0 | 21.1 | 18.6 | 80.49 | 3.55 | 13.34 | 0.81 |
XJG | 1.9 | 66.9 | 10.6 | 20.6 | 79.77 | 3.64 | 14.14 | 1.09 |
表1 HM、XJG和ATB的工业分析和元素分析
Table 1 Proximate and ultimate analyses of HM, XJG and ATB
样品 | 工业分析/%(质量,ad) | 元素分析/%(质量,daf) | ||||||
---|---|---|---|---|---|---|---|---|
M | Ash | VM | FC | C | H | O① | N | |
HM | 16 | 5.4 | 40.8 | 37.8 | 76.87 | 6.01 | 15.65 | 1.12 |
ATB | 1.3 | 59.0 | 21.1 | 18.6 | 80.49 | 3.55 | 13.34 | 0.81 |
XJG | 1.9 | 66.9 | 10.6 | 20.6 | 79.77 | 3.64 | 14.14 | 1.09 |
样品 | 化学组成/%(质量) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Na2O | K2O | CaO | MgO | Fe2O3 | P2O5 | TiO2 | SO3 | Others | |
100HM | 40.07 | 19.97 | 3.20 | 0.95 | 13.89 | 4.63 | 14.24 | 1.04 | 1.25 | 0.03 | 0.73 |
90HM10XJG | 42.92 | 19.13 | 3.35 | 1.16 | 12.36 | 3.97 | 14.26 | 0.80 | 1.21 | 0.03 | 0.80 |
80HM20XJG | 43.93 | 18.94 | 3.35 | 1.28 | 11.82 | 3.81 | 14.04 | 0.79 | 1.21 | 0.04 | 0.79 |
60HM40XJG | 46.91 | 18.01 | 3.58 | 1.45 | 10.53 | 3.10 | 14.01 | 0.52 | 1.17 | 0.03 | 0.69 |
100XJG | 50.75 | 17.07 | 3.56 | 1.69 | 9.03 | 2.38 | 13.48 | 0.26 | 1.08 | 0.04 | 0.66 |
90HM10ATB | 40.22 | 21.07 | 2.37 | 0.88 | 14.45 | 3.48 | 13.85 | 0.78 | 1.41 | 0.77 | 0.73 |
80HM20ATB | 40.14 | 21.78 | 1.81 | 0.82 | 14.72 | 2.78 | 13.21 | 0.64 | 1.53 | 1.87 | 0.70 |
60HM40ATB | 40.23 | 22.92 | 1.09 | 0.74 | 14.61 | 1.94 | 12.41 | 0.48 | 1.67 | 3.29 | 0.62 |
100ATB | 42.07 | 25.44 | 0.10 | 0.68 | 12.69 | 0.43 | 10.82 | 0.21 | 1.83 | 5.22 | 0.51 |
表2 灰渣的化学成分
Table 2 Chemical compositions of the ashes
样品 | 化学组成/%(质量) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Na2O | K2O | CaO | MgO | Fe2O3 | P2O5 | TiO2 | SO3 | Others | |
100HM | 40.07 | 19.97 | 3.20 | 0.95 | 13.89 | 4.63 | 14.24 | 1.04 | 1.25 | 0.03 | 0.73 |
90HM10XJG | 42.92 | 19.13 | 3.35 | 1.16 | 12.36 | 3.97 | 14.26 | 0.80 | 1.21 | 0.03 | 0.80 |
80HM20XJG | 43.93 | 18.94 | 3.35 | 1.28 | 11.82 | 3.81 | 14.04 | 0.79 | 1.21 | 0.04 | 0.79 |
60HM40XJG | 46.91 | 18.01 | 3.58 | 1.45 | 10.53 | 3.10 | 14.01 | 0.52 | 1.17 | 0.03 | 0.69 |
100XJG | 50.75 | 17.07 | 3.56 | 1.69 | 9.03 | 2.38 | 13.48 | 0.26 | 1.08 | 0.04 | 0.66 |
90HM10ATB | 40.22 | 21.07 | 2.37 | 0.88 | 14.45 | 3.48 | 13.85 | 0.78 | 1.41 | 0.77 | 0.73 |
80HM20ATB | 40.14 | 21.78 | 1.81 | 0.82 | 14.72 | 2.78 | 13.21 | 0.64 | 1.53 | 1.87 | 0.70 |
60HM40ATB | 40.23 | 22.92 | 1.09 | 0.74 | 14.61 | 1.94 | 12.41 | 0.48 | 1.67 | 3.29 | 0.62 |
100ATB | 42.07 | 25.44 | 0.10 | 0.68 | 12.69 | 0.43 | 10.82 | 0.21 | 1.83 | 5.22 | 0.51 |
样品 | 形态硫/%(ad) | |||
---|---|---|---|---|
全硫St | 硫酸盐硫Ss | 硫化铁硫Sp | 有机硫So | |
HM | 0.215 | 0.009 | 0.024 | 0.182 |
XJG | 0.475 | 0.078 | 0.382 | 0.015 |
ATB | 3.675 | 0.872 | 2.786 | 0.018 |
表3 样品硫形态分析
Table 3 Sulfur form analysis of the samples
样品 | 形态硫/%(ad) | |||
---|---|---|---|---|
全硫St | 硫酸盐硫Ss | 硫化铁硫Sp | 有机硫So | |
HM | 0.215 | 0.009 | 0.024 | 0.182 |
XJG | 0.475 | 0.078 | 0.382 | 0.015 |
ATB | 3.675 | 0.872 | 2.786 | 0.018 |
判别指数 | 边界条件 | ||
---|---|---|---|
轻度 | 中度 | 重度 | |
>72 | 65~72 | <65 | |
<0.206 | 0.206~0.4 | >0.4 | |
<0.6 | 0.6~2.0 | >2.0 | |
<0.6 | 0.6~40 | >40 | |
<10% 轻微结渣 | 10%~20% 中度结渣 | >20% 严重结渣 |
表4 各评判指标的边界条件[27-28]
Table 4 Judgement boundaries for various indexes[27-28]
判别指数 | 边界条件 | ||
---|---|---|---|
轻度 | 中度 | 重度 | |
>72 | 65~72 | <65 | |
<0.206 | 0.206~0.4 | >0.4 | |
<0.6 | 0.6~2.0 | >2.0 | |
<0.6 | 0.6~40 | >40 | |
<10% 轻微结渣 | 10%~20% 中度结渣 | >20% 严重结渣 |
1 | Zhou J B, Zhuang X G, Alastuey A, et al. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China[J]. International Journal of Coal Geology, 2010, 82(1): 51-67. |
2 | Li X, Li J, Wu G G, et al. Clean and efficient utilization of sodium-rich Zhundong coals in China: behaviors of sodium species during thermal conversion processes[J]. Fuel, 2018, 218: 162-173. |
3 | Liu Y Z, He Y, Wang Z H, et al. Characteristics of alkali species release from a burning coal/biomass blend[J]. Applied Energy, 2018, 215: 523-531. |
4 | Shi H, Wu Y X, Zhang M, et al. Ash deposition of Zhundong coal in a 350 MW pulverized coal furnace: influence of sulfation[J]. Fuel, 2020, 260: 116317. |
5 | Wu X J, Zhang X, Yan K, et al. Ash deposition and slagging behavior of Chinese Xinjiang high-alkali coal in 3 MWth pilot-scale combustion test[J]. Fuel, 2016, 181: 1191-1202. |
6 | Yang T, Wang X B, Li W G, et al. The layered structure of ash deposition in a 350 MW PC furnace burning high sodium-calcium lignite[C]//Clean Coal Technology and Sustainable Development. Singapore, 2016: 81-85. |
7 | Yang Y P, Lin X C, Chen X J, et al. Investigation on the effects of different forms of sodium, chlorine and sulphur and various pretreatment methods on the deposition characteristics of Na species during pyrolysis of a Na-rich coal[J]. Fuel, 2018, 234: 872-885. |
8 | Zygarlicke C J, Stomberg A L, Folkedahl B C, et al. Alkali influences on sulfur capture for North Dakota lignite combustion[J]. Fuel Processing Technology, 2006, 87(10): 855-861. |
9 | Wang X B, Xu Z X, Wei B, et al. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: a study from ash evaporating to condensing[J]. Applied Thermal Engineering, 2015, 80: 150-159. |
10 | Wang Y Z, Jin J, Liu D Y, et al. Understanding ash deposition for Zhundong coal combustion in 330 MW utility boiler: focusing on surface temperature effects[J]. Fuel, 2018, 216: 697-706. |
11 | Song G L, Yang S B, Song W J, et al. Release and transformation behaviors of sodium during combustion of high alkali residual carbon[J]. Applied Thermal Engineering, 2017, 122: 285-296. |
12 | Wei B, Wang X B, Tan H Z, et al. Effect of silicon-aluminum additives on ash fusion and ash mineral conversion of Xinjiang high-sodium coal[J]. Fuel, 2016, 181: 1224-1229. |
13 | Wang Y Z, Jin J, Liu D Y, et al. Understanding ash deposition for the combustion of Zhundong coal: focusing on different additives effects[J]. Energy & Fuels, 2018, 32(6): 7103-7111. |
14 | Yang H R, Jin J, Liu D Y, et al. The influence of vermiculite on the ash deposition formation process of Zhundong coal[J]. Fuel, 2018, 230: 89-97. |
15 | Yu Z H, Jin J, Hou F X, et al. Understanding effect of phosphorus-based additive on ash deposition characteristics during high-sodium and high-calcium Zhundong coal combustion in drop-tube furnace[J]. Fuel, 2021, 287: 119462. |
16 | Liang Y C, Liang H D, Zhu S Q. Mercury emission from spontaneously ignited coal gangue hill in Wuda coalfield, Inner Mongolia, China[J]. Fuel, 2016, 182: 525-530. |
17 | Caneda-Martínez L, Sánchez J, Medina C, et al. Reuse of coal mining waste to lengthen the service life of cementitious matrices[J]. Cement and Concrete Composites, 2019, 99: 72-79. |
18 | Ma H Q, Zhu H G, Wu C, et al. Study on compressive strength and durability of alkali-activated coal gangue-slag concrete and its mechanism[J]. Powder Technology, 2020, 368: 112-124. |
19 | Wu Y G, Yu X Y, Hu S Y, et al. Experimental study of the effects of stacking modes on the spontaneous combustion of coal gangue[J]. Process Safety and Environmental Protection, 2019, 123: 39-47. |
20 | Zhou X, Zhang T, Wan S, et al. Immobilizatiaon of heavy metals in municipal solid waste incineration fly ash with red mud-coal gangue[J]. Journal of Material Cycles and Waste Management, 2020, 22(6): 1953-1964. |
21 | Pallarés J, Herce C, Bartolomé C, et al. Investigation on co-firing of coal mine waste residues in pulverized coal combustion systems[J]. Energy, 2017, 140: 58-68. |
22 | Zhang Y Y, Zhang Z Z, Zhu M M, et al. Interactions of coal gangue and pine sawdust during combustion of their blends studied using differential thermogravimetric analysis[J]. Bioresoure Technology, 2016, 214: 396-403. |
23 | Zhang Y Y, Zhao J T, Ma Z B, et al. Effect of oxygen concentration on oxy-fuel combustion characteristic and interactions of coal gangue and pine sawdust[J]. Waste Management, 2019, 87: 288-294. |
24 | Ma B G, Li X G, Xu L, et al. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis[J]. Thermochimica Acta, 2006, 445(1): 19-22. |
25 | Niu S L, Han K H, Lu C M. Characteristic of coal combustion in oxygen/carbon dioxide atmosphere and nitric oxide release during this process[J]. Energy Conversion and Management, 2011, 52(1): 532-537. |
26 | Bagchi T P, Sen P K. Combined differential and integral method for analysis of non-isothermal kinetic data[J]. Thermochimica Acta, 1981, 51(2/3): 175-189. |
27 | Deng S H, Tan H Z, Wei B, et al. Investigation on combustion performance and ash fusion characteristics of Zhundong coal co-combustion with coal gangue[J]. Fuel, 2021, 294: 120555. |
28 | Pronobis M. Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations[J]. Biomass and Bioenergy, 2005, 28(4): 375-383. |
29 | Wang L, Skjevrak G, Hustad J E, et al. Sintering characteristics of sewage sludge ashes at elevated temperatures[J]. Fuel Processing Technology, 2012, 96: 88-97. |
30 | Shi M Z, Zhang R, Zhang L J, et al. Effects of alkali and alkaline earth metal species on the combustion characteristics and synergistic effects: sewage sludge and its blend with coal[J]. Waste Management, 2022, 146: 119-129. |
31 | Lei Z P, Liu M C, Yan J C, et al. Catalytic combustion of coke nuts and in-situ NO reduction under the action of steel scale[J]. Fuel, 2021, 289:119779. |
32 | Zhang L, Yan J C, Lei Z P, et al. Steel scale-CaO composite catalyst for coke combustion and in-situ NO and SO2 removal[J]. Journal of Industrial and Engineering Chemistry, 2022, 110: 375-381. |
33 | Si J P, Liu X W, Xu M H, et al. Effect of kaolin additive on PM2.5 reduction during pulverized coal combustion: importance of sodium and its occurrence in coal[J]. Applied Energy, 2014, 114: 434-444. |
34 | Yu K J, Chen X P, Cai T Y, et al. The effect of Kaolinite's structure on migration and release characteristics of sodium under oxy-fuel combustion condition[J]. Fuel, 2020, 277: 118154. |
[1] | 康超, 乔金鹏, 杨胜超, 彭超, 付元鹏, 刘斌, 刘建荣, Aleksandrova Tatiana, 段晨龙. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 74(7): 2783-2799. |
[2] | 石文举, 白进, 孔令学, 曹景沛, 李文. 不同气氛下Ca-Fe二元助剂改变高硅铝煤灰熔融温度的规律和机制[J]. 化工学报, 2022, 73(10): 4638-4647. |
[3] | 金默, 刘道银, 陈晓平. 基于离散元方法的高碱煤灰沉积过程数值模拟研究[J]. 化工学报, 2021, 72(4): 1939-1946. |
[4] | 魏砾宏, 樊雨, 房凡, 郭良振, 陈勇, 杨天华. Na及矿物类型对高碱煤快速热解焦油及BTEXN产物分配的影响[J]. 化工学报, 2021, 72(3): 1702-1711. |
[5] | 郭玉梅, 曹丽琼, 郭彦霞, 燕可洲. 煤矸石和赤泥协同提取氧化铝过程矿相转变研究[J]. 化工学报, 2019, 70(4): 1542-1549. |
[6] | 刘博, 刘墨祥, 陈晓平. 用废弃煤矸石制备高比表面积的SiO2-Al2O3二元复合气凝胶[J]. 化工学报, 2017, 68(5): 2096-2104. |
[7] | 郭彦霞, 张圆圆, 程芳琴. 煤矸石综合利用的产业化及其展望[J]. 化工学报, 2014, 65(7): 2443-2453. |
[8] | 马兆菲,白 杰,李春萍,张永锋,江 宇. 以内蒙古地区的高铝煤矸石为原料合成4A分子筛[J]. 化工进展, 2013, 32(03): 657-660. |
[9] | 王海霞, 倪文, 姜涛, 李德忠. 房山砂质煤矸石热活化的影响因素分析[J]. 化工学报, 2011, 62(6): 1736-1741. |
[10] | 滕英跃,张永锋,白 杰,孙俊民,杨利霞. 高铝煤矸石制备超细氧化铝和硅酸钠联产工艺 [J]. CIESC Journal, 2011, 30(2): 456-. |
[11] | 方祖国,宁 平,杨月红,马丽萍,张 伟,张慧娜. 复合还原剂还原分解磷石膏的影响因素 [J]. CIESC Journal, 2009, 28(3): 522-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 301
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 376
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||