化工学报 ›› 2021, Vol. 72 ›› Issue (4): 1939-1946.DOI: 10.11949/0438-1157.20201030
收稿日期:
2020-07-28
修回日期:
2020-10-12
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
陈晓平
作者简介:
金默(1996—),男,硕士研究生,基金资助:
JIN Mo(),LIU Daoyin,CHEN Xiaoping(
)
Received:
2020-07-28
Revised:
2020-10-12
Online:
2021-04-05
Published:
2021-04-05
Contact:
CHEN Xiaoping
摘要:
针对锅炉燃用高碱煤产生的受热面积灰问题,以流化床锅炉对流过热器为研究对象,采用离散元方法(discrete element method)建立黏性颗粒碰撞黏附模型,对过热器对流受热面的积灰过程进行数值模拟。分别研究了烟气流速、颗粒粒径、烟气温度以及壁面温度对积灰特性的影响规律。模拟结果表明:烟气流速增大、颗粒粒径减小会导致颗粒的碰撞率上升、捕集率下降;烟气温度和壁面温度提升时,颗粒表面能上升,导致颗粒捕集率上升,且壁面温度的影响更为显著;不同工况下最大积灰厚度、沉积物形状变化较小。
中图分类号:
金默, 刘道银, 陈晓平. 基于离散元方法的高碱煤灰沉积过程数值模拟研究[J]. 化工学报, 2021, 72(4): 1939-1946.
JIN Mo, LIU Daoyin, CHEN Xiaoping. Numerical simulation research of high-alkali coal ash deposition process based on discrete element method[J]. CIESC Journal, 2021, 72(4): 1939-1946.
工况参数 | 数值 |
---|---|
颗粒质量流量/(kg/s) | 3.80×10-3 |
颗粒粒径/μm | 30/40/50/60 |
烟气成分(质量分数) | 5%O2/85%CO2/10%H2O |
烟气入口速度/(m/s) | 6/8/10/12 |
烟气温度/℃ | 700/750/800/850/900 |
积灰壁面温度/℃ | 500/550/600 |
表1 模拟工况参数
Table 1 Parameters of simulated working conditions
工况参数 | 数值 |
---|---|
颗粒质量流量/(kg/s) | 3.80×10-3 |
颗粒粒径/μm | 30/40/50/60 |
烟气成分(质量分数) | 5%O2/85%CO2/10%H2O |
烟气入口速度/(m/s) | 6/8/10/12 |
烟气温度/℃ | 700/750/800/850/900 |
积灰壁面温度/℃ | 500/550/600 |
密度/(kg/m3) | 比热容/ (W/(kg·K)) | 热导率/ (kg·m2/s2) | 发射率 |
---|---|---|---|
3300 | 1000 | 0.33 | 0.6 |
表2 颗粒性质参数
Table 2 Particle property parameter
密度/(kg/m3) | 比热容/ (W/(kg·K)) | 热导率/ (kg·m2/s2) | 发射率 |
---|---|---|---|
3300 | 1000 | 0.33 | 0.6 |
图3 不同风速、粒径下碰撞率模拟值与计算值对比
Fig.3 Comparison of impact efficiency between simulation value and calculation value under different gas velocity and diameters
文献 | 捕集率实验值/% | 捕集率模拟值/% |
---|---|---|
[ | 4.00 | 3.79 |
[ | 6.27 | 6.01 |
[ | 0.25 | 0.21 |
表3 捕集率实验值与模拟值对比
Table 3 Comparison between experimental results and simulated results
文献 | 捕集率实验值/% | 捕集率模拟值/% |
---|---|---|
[ | 4.00 | 3.79 |
[ | 6.27 | 6.01 |
[ | 0.25 | 0.21 |
烟气流速/(m/s) | 最大积灰厚度/mm | 积灰扩展角/(°) |
---|---|---|
6 | 2.78 | 138 |
8 | 2.76 | 137 |
10 | 2.64 | 135 |
12 | 2.60 | 134 |
表4 不同风速下颗粒积灰特性
Table 4 Deposition characteristics of particles under different gas velocity
烟气流速/(m/s) | 最大积灰厚度/mm | 积灰扩展角/(°) |
---|---|---|
6 | 2.78 | 138 |
8 | 2.76 | 137 |
10 | 2.64 | 135 |
12 | 2.60 | 134 |
壁面 温度/℃ | 碰撞率/% | 捕集率/% | 最大积灰 厚度/mm | 积灰扩展角/(°) | 积灰平均温度/℃ |
---|---|---|---|---|---|
500 | 74.24 | 1.87 | 2.72 | 134 | 513 |
550 | 74.25 | 2.09 | 2.79 | 138 | 560 |
600 | 74.27 | 2.24 | 2.88 | 142 | 605 |
表5 不同壁面温度下颗粒积灰特性(dp=60 μm,v=12 m/s,Tgas=900℃)
Table 5 Deposition character of particles under different wall temperature
壁面 温度/℃ | 碰撞率/% | 捕集率/% | 最大积灰 厚度/mm | 积灰扩展角/(°) | 积灰平均温度/℃ |
---|---|---|---|---|---|
500 | 74.24 | 1.87 | 2.72 | 134 | 513 |
550 | 74.25 | 2.09 | 2.79 | 138 | 560 |
600 | 74.27 | 2.24 | 2.88 | 142 | 605 |
烟气 温度/℃ | 碰撞率/% | 捕集率/% | 最大积灰 厚度/mm | 积灰扩展角/(°) | 积灰平均温度/℃ |
---|---|---|---|---|---|
700 | 74.19 | 1.89 | 2.74 | 134 | 553 |
750 | 74.22 | 1.92 | 2.76 | 135 | 556 |
800 | 74.26 | 2.01 | 2.77 | 135 | 557 |
850 | 74.21 | 2.04 | 2.78 | 136 | 559 |
900 | 74.25 | 2.09 | 2.79 | 138 | 560 |
表6 不同烟气温度下颗粒积灰特性(dp=60 μm,v=6 m/s,Twall=550℃)
Table 6 Deposition character of particles under different gas temperature
烟气 温度/℃ | 碰撞率/% | 捕集率/% | 最大积灰 厚度/mm | 积灰扩展角/(°) | 积灰平均温度/℃ |
---|---|---|---|---|---|
700 | 74.19 | 1.89 | 2.74 | 134 | 553 |
750 | 74.22 | 1.92 | 2.76 | 135 | 556 |
800 | 74.26 | 2.01 | 2.77 | 135 | 557 |
850 | 74.21 | 2.04 | 2.78 | 136 | 559 |
900 | 74.25 | 2.09 | 2.79 | 138 | 560 |
1 | Li J, Zhuang X, Querol X, et al. Environmental geochemistry of the feed coals and their combustionby-products from two coal-fired power plants in Xinjiang Province, Northwest China[J]. Fuel, 2012, 95(95): 446-456. |
2 | Zhou J, Zhuang X, Alastuey A, et al. Geochemistryand mineralogy of coal in the recently explored Zhundong large coalfield in the Junggar basin, Xinjiang province, China [J]. Int. J. Coal Geol., 2010, 82(1/2): 51-67. |
3 | Eyk P J V, Ashman P J, Alwahabi Z T, et al. The release of water-bound and organic sodium from Loy Yang coal during the combustion of single particles in a flat flame[J]. Combustion & Flame, 2011, 158(6): 1181-1192. |
4 | 张志潮, 刘晶, 杨应举, 等. 燃煤锅炉烟气中Na2SO4生成的化学动力学研究[J]. 化工学报, 2018, 69(8): 3643-3650. |
Zhang Z C, Liu J, Yang Y J, et al. Study on chemical kinetics of Na2SO4 formation in coal fired flue gas [J]. CIESC Journal, 2018, 69(8): 3643-3650. | |
5 | Taha J T, Arthur F S, Kurt S, et al. CFD modeling of ash deposition for co-combustion of MBM with coal in a tangentially fired utility boiler[J]. Fuel Process. Technol., 2013, 114(114): 126-134. |
6 | Hui H, Ya L H, Wen Q T, et al. A parameter study of tube bundle heat exchangers for fouling rate reduction[J]. Interational Journal of Heat and Mass Transfer, 2014, 72: 210-221. |
7 | Hao Z, Kefa C, Sun P. Prediction of ash deposition in ash hopper when tilting burners are used[J]. Fuel Process. Technol., 2002, 79(2): 181-195. |
8 | Weiguo A, Kuhlman J M. Simulation of coal ash particle deposition experiments[J]. Mol. Cell Biol., 2011, 5(10): 2874-2877. |
9 | Weber R, Mancini M, Schaffel M N, et al. On predicting the ash behaviour using computational fluid dynamics[J]. Fuel Process. Technol., 2013, 105: 113-128. |
10 | García P M, Esa V, Timo H. Unsteady CFD analysis of kraft recovery boiler fly-ash trajectories, sticking efficiencies and deposition rates with a mechanistic particle rebound-stick model[J]. Fuel, 2016, 181: 408-420. |
11 | Mu L, Wang S, Zhai Z, et al. Unsteady CFD simulation on ash particle deposition and removal characteristics in tube banks: focusing on particle diameter, flow velocity, and temperature[J]. Journal of the Energy Institute, 2020, 93(4): 1481-1494. |
12 | Zhou H, Zhang K, Li Y, et al. Simulation of ash deposition in different furnace temperature with a 2D dynamic mesh model[J]. Journal of the Energy Institute, 2019, 92(6): 1743-1756. |
13 | Walsh P M, Sayre A N, Loehden D O, et al. Deposition of bituminous coal ash on an isolated heat exchanger tube: effects of coal properties on deposit growth[J]. Prog. Energy Combust. Sci., 1990, 16(4): 327-345. |
14 | Christoph W, Benjamin K, Gundula B, et al. Evaluation, comparison and validation of deposition criteria for numerical simulation of slagging[J]. Appl. Energy, 2012, 93(1): 184-192. |
15 | Marco L, Hartmut S, Jaap K. Ash deposition modeling using a visco-elastic approach[J]. Fuel, 2012, 102: 145-155. |
16 | Krzysztof W, Sylwester K. A practical numerical approach for prediction of particulate fouling in PC boilers[J]. Fuel, 2012, 97(7): 38-48. |
17 | 孙恒清, 盛昌栋. 含K成分形成初始沉积层的数学模型及烟气条件影响分析[J]. 化工学报, 2019, 70(9): 3495-3502. |
Sun H Q, Sheng C D. Model for the formation of initial deposited layer by K-containing species and influence analysis of flue gas conditions[J]. CIESC Journal, 2019, 70(9): 3495-3502. | |
18 | Xin Y, Derek I, Lin M, et al. Understanding the ash deposition formation in Zhundong lignite combustion through dynamic CFD modelling analysis[J]. Fuel, 2017, 194: 533-543. |
19 | Lee B E, Fletcher C A, Shin S, et al. Computational study of fouling deposit due to surface-coated particles in coal-fired power utility boilers[J]. Fuel, 2002, 81(15): 2001-2008 |
20 | Walsh P M, Sarofim A F, Beer J M. Fouling of convection heat exchangers by lignitic coal ash[J]. Energy Fuels, 1992, 6(6): 709-715. |
21 | Wibberley L J, Wall T F. Alkali-ash reactions and deposit formation in pulverized-coal-fired boilers: the thermodynamic aspects involving silica, sodium, sulphur and chlorine[J]. Fuel, 1982, 61(1): 87-92. |
22 | Wall S, John W, Wang H, et al. Measurements of kinetic energy loss for particles impacting surfaces[J]. Aerosol. Sci. Technol., 1990, 12(4): 926-946. |
23 | Liu C, Liu Z, Zhang T, et al. Numerical investigation on development of initial ash deposition layer for a high-alkali coal[J]. Energy & Fuels, 2017, 31(3): 2596-2606. |
24 | Hærvig J, Kleinhans U, Wieland C, et al. On the adhesive JKR contact and rolling models for reduced particle stiffness discrete element simulations[J]. Powder Technology, 2017, 319: 472-482. |
25 | 唐智, 陈晓平, 刘道银, 等. 流化床垃圾焚烧炉飞灰沉积实验[J]. 化工进展, 2020, 39(1): 387-394. |
Tang Z, Chen X P, Liu D Y, et al. Experimental investigation of ash deposition on heating surfaces in a municipal solid waste(MSW) bubbling fluidized beds [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 387-394. | |
26 | Luo K, Yang S, Fang M, et al. LES-DEM investigation of the solid transportation mechanism in a 3-D bubbling fluidized bed(Ⅰ): Hydrodynamics[J]. Powder Technology, 2014, 256(2): 385-394. |
27 | Liu D Y, Bu C S, Chen X P. Development and test of CFD-DEM model for complex geometry: a coupling algorithm for Fluent and DEM[J]. Computers & Chemical Engineering, 2013, 58: 260-268. |
28 | Tomas J. Adhesion of ultrafine particles—a micromechanical approach[J]. Chemical Engineering Science, 2007, 62(7): 1997-2010. |
29 | 王铮. 纳米颗粒聚团破碎、重组和凝并的数值模拟研究[D]. 南京: 东南大学, 2018. |
Wang Z. Numerical simulation of nanoparticle agglomerate breakage, restructuring, and coagulation[D]. Nanjing: Southeast University, 2018. | |
30 | Zbogar A, Frandsen F J, Jensen P A, et al. Heat transfer in ash deposits: a modelling tool-box[J]. Prog. Energy Combust. Sci., 2005, 31(5): 371-421. |
31 | Hong W, Wang B, Zheng J. Numerical study on the influence of fine particle deposition characteristics on wall roughness[J]. Powder Technology, 2020, 360: 120-128. |
32 | Liu Z, Li J, Zhu M, et al. An experimental investigation into the effect of flue gas recirculation on ash deposition and Na migration behaviour in circulating fluidized bed during combustion of high sodium Zhundong lignite[J]. Fuel Process. Technol., 2020, 199: 106-300. |
33 | Weber R, Schaffel-Mancini N, Mancini M, et al. Fly ash deposition modelling: requirements for accurate predictions of particle impaction on tubes using RANS-based computational fluid dynamics[J]. Fuel, 2013, 108: 586-596. |
34 | Wessel R A, Righi J. Generalized correlations for inertial impaction of particles on a circular cylinder[J]. Aerosol Science and Technology, 1988, 9(1): 29-60. |
35 | Li G, Li S, Huang Q, et al. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel, 2015, 143(44): 430-437. |
36 | Zhou H, Jensen P A, Frandsen F J. Dynamic mechanistic model of superheater deposit growth and shedding in a biomass fired grate boiler[J]. Fuel, 2007, 86(10/11): 1519-1533. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[13] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[14] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[15] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 215
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 408
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||