化工学报 ›› 2023, Vol. 74 ›› Issue (7): 2783-2799.DOI: 10.11949/0438-1157.20230260
康超1,2(), 乔金鹏1,2(), 杨胜超1,2, 彭超1,2, 付元鹏3, 刘斌4, 刘建荣5, Aleksandrova Tatiana6, 段晨龙1,2()
收稿日期:
2023-03-20
修回日期:
2023-06-15
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
乔金鹏,段晨龙
作者简介:
康超(1999—),男,硕士研究生,3310637329@qq.com
基金资助:
Chao KANG1,2(), Jinpeng QIAO1,2(), Shengchao YANG1,2, Chao PENG1,2, Yuanpeng FU3, Bin LIU4, Jianrong LIU5, Aleksandrova TATIANA6, Chenlong DUAN1,2()
Received:
2023-03-20
Revised:
2023-06-15
Online:
2023-07-05
Published:
2023-08-31
Contact:
Jinpeng QIAO, Chenlong DUAN
摘要:
煤矸石是煤炭开采洗选过程中的固体废弃物,是我国产储量最大的工业固废之一,回收利用其中潜在的矿产资源对实现我国绿色矿山建设及“双碳”目标达成意义重大。通过综合分析国内外现阶段煤矸石提取有价金属相关技术,系统阐述了“单一/复合活化-碱熔/酸浸”联合强化铝、铁等有价组分高效富集研究进展,重点分析了锂、稀土等微量关键金属的赋存状态及提取方法。针对煤矸石组分复杂且波动范围大、有价金属含量低等问题,可基于矿物特性采用相应选矿技术初步富集载体矿物,提升有价金属品位,进而开展铝、铁、锂、稀土等多种元素协同提取,实现煤矸石高附加值利用。
中图分类号:
康超, 乔金鹏, 杨胜超, 彭超, 付元鹏, 刘斌, 刘建荣, Aleksandrova Tatiana, 段晨龙. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 74(7): 2783-2799.
Chao KANG, Jinpeng QIAO, Shengchao YANG, Chao PENG, Yuanpeng FU, Bin LIU, Jianrong LIU, Aleksandrova TATIANA, Chenlong DUAN. Research progress on activation extraction of valuable metals in coal gangue[J]. CIESC Journal, 2023, 74(7): 2783-2799.
矸石产地 | 主要氧化物质量分数/% | 岩石类型 | ||||
---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | ||
河北唐山 | 51.30 | 21.83 | 6.43 | 3.53 | 2.24 | SiO2:40%~70% Al2O3:15%~30% 属岩土矸石 |
河北邯郸 | 52.26 | 30.09 | 5.78 | 2.58 | 0.62 | |
黑龙江鸡西 | 64.67 | 23.28 | 3.97 | 0.32 | 1.06 | |
辽宁阜新 | 61.13 | 17.71 | 10.32 | 5.02 | 4.38 | |
山东淄博 | 57.87 | 18.90 | 6.17 | 4.17 | 8.27 | |
安徽淮北 | 60.16 | 24.19 | 4.86 | 0.61 | 0.89 | |
安徽淮南 | 61.29 | 29.75 | 4.35 | 0.76 | 0.63 | |
江西萍乡 | 68.84 | 21.33 | 2.68 | 0.46 | 1.27 | |
陕西渭南 | 50.15 | 23.78 | 5.82 | 2.21 | 0.81 | |
江苏徐州 | 45.73 | 38.69 | 0.47 | 0.09 | 0.16 | |
贵州六盘水 | 42.27 | 15.56 | 19.97 | 1.70 | 2.04 | |
河南平顶山 | 63.34 | 25.56 | 4.76 | 1.07 | 0.49 | |
甘肃张掖 | 89.20 | 1.54 | 1.59 | 7.23 | 0.01 | SiO2>70% 属砂岩矸石 |
湖南娄底 | 90.45 | 0.36 | 2.59 | 0.14 | 0 | |
新疆昌吉 | 70.25 | 4.68 | 1.01 | 1.22 | 1.10 | |
内蒙古乌海 | 50.72 | 44.17 | 1.88 | 0.71 | 0.51 | Al2O3>40% 属铝质岩矸石 |
内蒙古准格尔 | 42.72 | 47.79 | 2.50 | 2.50 | 0.40 | |
辽宁葫芦岛 | 49.14 | 40.68 | 1.93 | 0.72 | 0.13 | |
山西长治 | 53.96 | 42.40 | 0.96 | 0.56 | 0.50 | |
山东济宁 | 1.69 | 1.13 | 2.60 | 86.09 | 1.78 | CaO>30% 属钙质岩矸石 |
云南红河州 | 14.28 | 2.93 | 4.98 | 68.60 | 1.40 |
表1 我国典型煤矸石化学组成[5-7]
Table 1 Chemical compositions of representative coal gangue in China[5-7]
矸石产地 | 主要氧化物质量分数/% | 岩石类型 | ||||
---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | ||
河北唐山 | 51.30 | 21.83 | 6.43 | 3.53 | 2.24 | SiO2:40%~70% Al2O3:15%~30% 属岩土矸石 |
河北邯郸 | 52.26 | 30.09 | 5.78 | 2.58 | 0.62 | |
黑龙江鸡西 | 64.67 | 23.28 | 3.97 | 0.32 | 1.06 | |
辽宁阜新 | 61.13 | 17.71 | 10.32 | 5.02 | 4.38 | |
山东淄博 | 57.87 | 18.90 | 6.17 | 4.17 | 8.27 | |
安徽淮北 | 60.16 | 24.19 | 4.86 | 0.61 | 0.89 | |
安徽淮南 | 61.29 | 29.75 | 4.35 | 0.76 | 0.63 | |
江西萍乡 | 68.84 | 21.33 | 2.68 | 0.46 | 1.27 | |
陕西渭南 | 50.15 | 23.78 | 5.82 | 2.21 | 0.81 | |
江苏徐州 | 45.73 | 38.69 | 0.47 | 0.09 | 0.16 | |
贵州六盘水 | 42.27 | 15.56 | 19.97 | 1.70 | 2.04 | |
河南平顶山 | 63.34 | 25.56 | 4.76 | 1.07 | 0.49 | |
甘肃张掖 | 89.20 | 1.54 | 1.59 | 7.23 | 0.01 | SiO2>70% 属砂岩矸石 |
湖南娄底 | 90.45 | 0.36 | 2.59 | 0.14 | 0 | |
新疆昌吉 | 70.25 | 4.68 | 1.01 | 1.22 | 1.10 | |
内蒙古乌海 | 50.72 | 44.17 | 1.88 | 0.71 | 0.51 | Al2O3>40% 属铝质岩矸石 |
内蒙古准格尔 | 42.72 | 47.79 | 2.50 | 2.50 | 0.40 | |
辽宁葫芦岛 | 49.14 | 40.68 | 1.93 | 0.72 | 0.13 | |
山西长治 | 53.96 | 42.40 | 0.96 | 0.56 | 0.50 | |
山东济宁 | 1.69 | 1.13 | 2.60 | 86.09 | 1.78 | CaO>30% 属钙质岩矸石 |
云南红河州 | 14.28 | 2.93 | 4.98 | 68.60 | 1.40 |
元素 | 分布区 | 含量/(μg/g) | 主要赋存形式 | 文献 |
---|---|---|---|---|
Li | 山西平朔矿区 | 166 | 硅酸盐矿物 | [ |
山西阳泉矿区 | 169.8 | 硅酸盐矿物 | [ | |
内蒙古准格尔矿区 | 160 | 硅酸盐矿物 | [ | |
重庆草堂矿区 | 291.46 | 高岭石 | [ | |
广西扶绥矿区 | 97.94 | 高岭石 | [ | |
贵州桥溪河矿区 | 288 | 高岭石 | [ | |
Ga | 山西平朔矿区 | 40.01 | 黏土矿物 | [ |
山西大同矿区 | 45.40 | 黏土矿物 | [ | |
内蒙古准格尔矿区 | 44 | 硅酸盐矿物 | [ | |
贵州桥溪河矿区 | 55.2 | 黏土矿物 | [ | |
Nb | 山西安太堡矿区 | 74.8 | 锆石、锐钛矿 | [ |
四川古叙矿区 | 45.38 | 锆石、锐钛矿 | [ | |
广西合山矿区 | 50 | 锆石、锐钛矿 | [ | |
重庆松藻矿区 | 169 | 锆石、锐钛矿 | [ | |
贵州桥溪河矿区 | 267 | 锆石、锐钛矿 | [ |
表2 中国煤中锂、镓、铌含量及赋存形式
Table 2 Lithium, gallium, and niobium content and occurrence in Chinese coal
元素 | 分布区 | 含量/(μg/g) | 主要赋存形式 | 文献 |
---|---|---|---|---|
Li | 山西平朔矿区 | 166 | 硅酸盐矿物 | [ |
山西阳泉矿区 | 169.8 | 硅酸盐矿物 | [ | |
内蒙古准格尔矿区 | 160 | 硅酸盐矿物 | [ | |
重庆草堂矿区 | 291.46 | 高岭石 | [ | |
广西扶绥矿区 | 97.94 | 高岭石 | [ | |
贵州桥溪河矿区 | 288 | 高岭石 | [ | |
Ga | 山西平朔矿区 | 40.01 | 黏土矿物 | [ |
山西大同矿区 | 45.40 | 黏土矿物 | [ | |
内蒙古准格尔矿区 | 44 | 硅酸盐矿物 | [ | |
贵州桥溪河矿区 | 55.2 | 黏土矿物 | [ | |
Nb | 山西安太堡矿区 | 74.8 | 锆石、锐钛矿 | [ |
四川古叙矿区 | 45.38 | 锆石、锐钛矿 | [ | |
广西合山矿区 | 50 | 锆石、锐钛矿 | [ | |
重庆松藻矿区 | 169 | 锆石、锐钛矿 | [ | |
贵州桥溪河矿区 | 267 | 锆石、锐钛矿 | [ |
地区 | 稀土元素含量/(μg/g) | 主要赋存形式 | 文献 |
---|---|---|---|
山西孝义 | 85 | 硅酸盐态 | [ |
山西平朔 | 186 | 硅酸盐态 | [ |
太原杜儿平矿 | 96.65~379.05 | 黏土矿物 | [ |
太原马兰矿夹矸 | 346.85 | — | [ |
宁夏石炭井 | 422.81 | 硅铝化合物 | [ |
宁夏石嘴山 | 255.75 | 硅铝化合物 | [ |
重庆中梁山 | 1515 | 主要以磷铝铈矿和独居石的形式存在,部分呈离子吸附态 | [ |
内蒙古哈尔乌素煤矿 | 128.4 | 硅酸盐和铝硅酸盐态 | [ |
内蒙古准格尔煤矿 | 664.18 | 非晶态相 | [ |
内蒙古准格尔 某选煤厂 | 76.59 | 高岭石 | [ |
淮南朱集矿 | 718 | — | [ |
美国 | 334.2 | — | [ |
表3 煤矸石中稀土元素含量及赋存形式
Table 3 Rare earth elements content and occurrence in coal gangue
地区 | 稀土元素含量/(μg/g) | 主要赋存形式 | 文献 |
---|---|---|---|
山西孝义 | 85 | 硅酸盐态 | [ |
山西平朔 | 186 | 硅酸盐态 | [ |
太原杜儿平矿 | 96.65~379.05 | 黏土矿物 | [ |
太原马兰矿夹矸 | 346.85 | — | [ |
宁夏石炭井 | 422.81 | 硅铝化合物 | [ |
宁夏石嘴山 | 255.75 | 硅铝化合物 | [ |
重庆中梁山 | 1515 | 主要以磷铝铈矿和独居石的形式存在,部分呈离子吸附态 | [ |
内蒙古哈尔乌素煤矿 | 128.4 | 硅酸盐和铝硅酸盐态 | [ |
内蒙古准格尔煤矿 | 664.18 | 非晶态相 | [ |
内蒙古准格尔 某选煤厂 | 76.59 | 高岭石 | [ |
淮南朱集矿 | 718 | — | [ |
美国 | 334.2 | — | [ |
1 | 周楠, 姚依南, 宋卫剑, 等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报, 2020, 37(1): 136-146. |
Zhou N, Yao Y N, Song W J, et al. Present situation and prospect of coal gangue treatment technology[J]. Journal of Mining & Safety Engineering, 2020, 37(1): 136-146. | |
2 | 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165-178. |
Li Z, Xue J, Zhu Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165-178. | |
3 | Li J Y, Wang J M. Comprehensive utilization and environmental risks of coal gangue: a review[J]. Journal of Cleaner Production, 2019, 239: 117946. |
4 | 杨方亮. “双碳”目标下资源综合利用转型路径分析[J]. 煤炭加工与综合利用, 2022(1): 27-33. |
Yang F L. Analysis of the transfonmation path of comprehensive resources utilization under the “double carbon” target[J]. Coal Processing & Comprehensive Utilization, 2022(1): 27-33. | |
5 | 姚永建, 张辉, 黄建军, 等. 煤矸石的分级分质技术研究[J]. 煤炭加工与综合利用, 2018(12): 38-41. |
Yao Y J, Zhang H, Huang J J, et al. Classification and quality separation technology of coal gangue[J]. Coal Processing & Comprehensive Utilization, 2018(12): 38-41. | |
6 | 王玉涛. 煤矸石固废无害化处置与资源化综合利用现状与展望[J]. 煤田地质与勘探, 2022, 50(10): 54-66. |
Wang Y T. Status and prospect of harmless disposal and resource comprehensive utilization of solid waste of coal gangue[J]. Coal Geology & Exploration, 2022, 50(10): 54-66. | |
7 | 贾鲁涛, 吴倩云. 煤矸石特性及其资源化综合利用现状[J]. 煤炭技术, 2019, 38(11): 37-40. |
Jia L T, Wu Q Y. Properties and comprehensive utilization status of coal gangue resource[J]. Coal Technology, 2019, 38(11): 37-40. | |
8 | 司鹏. 煤矸石酸法提铝的活化技术研究[D]. 上海: 华东理工大学, 2011. |
Si P. Activation technology for aluminum recovery from coal spoil through acid leaching route[D]. Shanghai: East China University of Science and Technology, 2011. | |
9 | 张长森. 煤矸石资源再生利用技术[M]. 北京: 化学工业出版社, 2018. |
Zhang C S. Recycling Technology of Coal Gangue Resources[M]. Beijing: Chemical Industry Press, 2018. | |
10 | 赵越. 机械力化学作用高岭石制备新型水处理材料的研究[D]. 武汉: 武汉理工大学, 2020. |
Zhao Y. Study on the preparation of new water treatment materials by mechanochemical action of kaolinite[D]. Wuhan: Wuhan University of Technology, 2020. | |
11 | Zhang C S, Liu X F, Wu Q S, et al. Study of mechanical force on coal gangue reactivity[J]. Key Engineering Materials, 2013, 539: 145-148. |
12 | Asuha S, Talintuya T, Han Y, et al. Selective extraction of aluminum from coal-bearing kaolinite by room-temperature mechanochemical method for the preparation of γ-Al2O3 powder[J]. Powder Technology, 2018, 325: 121-125. |
13 | Tosoni S, Doll K, Ugliengo P. Hydrogen bond in layered materials: structural and vibrational properties of kaolinite by a periodic B3LYP approach[J]. Chemistry of Materials, 2006, 18(8): 2135-2143. |
14 | Zhang Y Y, Xu L, Seetharaman S, et al. Effects of chemistry and mineral on structural evolution and chemical reactivity of coal gangue during calcination: towards efficient utilization[J]. Materials and Structures, 2015, 48(9): 2779-2793. |
15 | 张圆圆, 杨凤玲, 程芳琴. 煤矸石中高岭石的脱羟基特点及动力学研究[J]. 煤炭转化, 2015, 38(3): 78-81. |
Zhang Y Y, Yang F L, Cheng F Q. Study on kaolinite dehydroxylation characteristic and kinetics in coal gangue[J]. Coal Conversion, 2015, 38(3): 78-81. | |
16 | 郝志飞, 张印民, 张永锋, 等. 准格尔地区煤矸石的矿物学分析和热活化研究[J]. 硅酸盐通报, 2016, 35(4): 1198-1202. |
Hao Z F, Zhang Y M, Zhang Y F, et al. Mineralogical analysis and thermal activation research on coal gangue of Zhungeer[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(4): 1198-1202. | |
17 | 曹丽琼, 张丽宏, 郭彦霞, 等. 碳含量对煤矸石活化及酸浸提铝的影响[J]. 洁净煤技术, 2020, 26(4): 203-208. |
Cao L Q, Zhang L H, Guo Y X, et al. Effect of carbon content on the activation of coal gangue and acid leaching for aluminum extraction[J]. Clean Coal Technology, 2020, 26(4): 203-208. | |
18 | 姚林波, 高振敏, 胡澄. 高岭石热转变产物29Si、27Al魔角旋转核磁共振研究[J]. 矿物学报, 2001, 21(3): 448-452. |
Yao L B, Gao Z M, Hu C. 29Si- and 27Al-MAS/NMR study of the thermal transformation of kaolinite[J]. Acta Mineralogica Sinica, 2001, 21(3): 448-452. | |
19 | 魏存弟, 马鸿文, 杨殿范, 等. 煅烧煤系高岭石的相转变[J]. 硅酸盐学报, 2005, 33(1): 77-81. |
Wei C D, Ma H W, Yang D F, et al. Phase transformation for calcined coal measures kaolinite[J]. Journal of the Chinese Ceramic Society, 2005, 33(1): 77-81. | |
20 | 刘成龙, 夏举佩, 范辉, 等. 微波技术在煤矸石资源化应用的研究进展[J]. 应用化工, 2019, 48(9): 2246-2250. |
Liu C L, Xia J P, Fan H, et al. Research progress on applications of microwave technique in reclamation of coal gangue[J]. Applied Chemical Industry, 2019, 48(9): 2246-2250. | |
21 | Clark D E, Sutton W H. Microwave processing of materials[J]. Annual Review of Materials Science, 1996, 26: 299-331. |
22 | 赵志曼, 何天淳, 程赫明, 等. 微波辐照激发煤矸石活性机理研究[J]. 矿冶工程, 2002, 22(3): 54-56. |
Zhao Z M, He T C, Cheng H M, et al. Exciting activity of coal gangue by microwave radiation: a mechanism study[J]. Mining and Metallurgical Engineering, 2002, 22(3): 54-56. | |
23 | 张长森, 邓育新, 吴其胜. 微波活化煤矸石反应活性及胶凝性能[J]. 环境工程学报, 2013, 7(8): 3170-3174. |
Zhang C S, Deng Y X, Wu Q S. Reactivity and cementitious properties of coal gangue by microwave irradiation[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 3170-3174. | |
24 | Lan X J, Liu S H, Jing Y A. Microwave activation of coal gangue for Al compound[J]. IOP Conference Series: Materials Science and Engineering, 2019, 592(1): 012023. |
25 | 赵倩. Na2CO3活化粉煤灰/煤矸石提取Al2O3的工艺优化及机理[D]. 太原: 山西大学, 2016. |
Zhao Q. The process optimization and mechanism of extraction of Al2O3 from fly ash or coal gangue with Na2CO3 [D]. Taiyuan: Shanxi University, 2016. | |
26 | Guo Y X, Yan K Z, Cui L, et al. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction[J]. International Journal of Mineral Processing, 2014, 131: 51-57. |
27 | 任根宽, 朱登磊, 谭超. 从煤矸石中提取活性氧化铝的清洁化工艺[J]. 安全与环境学报, 2014, 14(1): 160-163. |
Ren G K, Zhu D L, Tan C. Renovation on the cleansing technology in leaching of active alumina from the coal gangue[J]. Journal of Safety and Environment, 2014, 14(1): 160-163. | |
28 | Guo Y X, Zhao Q, Yan K Z, et al. Novel process for alumina extraction via the coupling treatment of coal gangue and bauxite red mud[J]. Industrial & Engineering Chemistry Research, 2014, 53(11): 4518-4521. |
29 | 郭玉梅, 曹丽琼, 郭彦霞, 等. 煤矸石和赤泥协同提取氧化铝过程矿相转变研究[J]. 化工学报, 2019, 70(4): 1542-1549. |
Guo Y M, Cao L Q, Guo Y X, et al. Mineral transformation in process of combined extraction of alumina from coal gangue and red mud[J]. CIESC Journal, 2019, 70(4): 1542-1549. | |
30 | 郭志强, 燕可洲, 张吉元, 等. 煤矸石/粉煤灰对赤泥钠化还原焙烧反应的影响机制[J]. 化工学报, 2022, 73(5): 2194-2205. |
Guo Z Q, Yan K Z, Zhang J Y, et al. Influence mechanism of coal gangue/coal fly ash on the sodium reduction roasting reaction of red mud[J]. CIESC Journal, 2022, 73(5): 2194-2205. | |
31 | Zhang T, Yang H F, Zhang H B, et al. Aluminum extraction from activated coal gangue with carbide slag[J]. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105504. |
32 | 焦亚东, 徐树全, 彭道军, 等. 煤矸石的活化方法与活化机理研究进展[J]. 应用化工, 2022, 51(8): 2362-2366, 2372. |
Jiao Y D, Xu S Q, Peng D J, et al. Research progress on activation and mechanism of coal gangue[J]. Applied Chemical Industry, 2022, 51(8): 2362-2366, 2372. | |
33 | 郭丽君, 李超, 赵亮, 等. 煤矸石的机械-热复合活化研究[J]. 应用化工, 2018, 47(8): 1800-1802. |
Guo L J, Li C, Zhao L, et al. Research on the mechanical and thermal activation of coal gangue[J]. Applied Chemical Industry, 2018, 47(8): 1800-1802. | |
34 | 韩跃新, 柳晓, 何发钰, 等. 我国铝土矿资源及其选矿技术进展[J]. 矿产保护与利用, 2019, 39(4): 151-158. |
Han Y X, Liu X, He F Y, et al. Current situation of bauxite resource and its beneficiation technology in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 151-158. | |
35 | 李宛霖. 煤矸石多金属提取过程及固化机理研究[D]. 昆明: 昆明理工大学, 2019. |
Li W L. Study on extraction process and solidification mechanism of coal gangue polymetallic[D]. Kunming: Kunming University of Science and Technology, 2019. | |
36 | 杨权成. 煤矸石提取氧化铝及其制备功能材料研究[D]. 北京: 中国矿业大学, 2020. |
Yang Q C. Research on extraction of alumina from coal gangue and preparation of functional materials[D]. Beijing: China University of Mining & Technology, 2020. | |
37 | 相亚军, 纪利春, 任根宽. 碱法提取煤矸石中氧化铝试验条件优化[J]. 中国电力, 2015, 48(1): 64-67. |
Xiang Y J, Ji L C, Ren G K. Optimization of experimental conditions for alkaline alumina extraction from coal gangue[J]. Electric Power, 2015, 48(1): 64-67. | |
38 | 张佼阳, 童军武, 孙培梅. 从煤矸石中提取氧化铝熟料烧成过程工艺研究[J]. 湿法冶金, 2011, 30(4): 316-319. |
Zhang J Y, Tong J W, Sun P M. Study on sintering process of raw materials in extracting alumina from coal gangue[J]. Hydrometallurgy of China, 2011, 30(4): 316-319. | |
39 | 耿学文, 马鸿文, 苏双青, 等. 高铝煤矸石脱硅滤饼碱石灰烧结法制备氢氧化铝的实验研究[J]. 矿物岩石地球化学通报, 2012, 31(6): 635-639. |
Geng X W, Ma H W, Su S Q, et al. The preparation of aluminum hydroxide from high-alumina gangue desilication residues based on soda lime sintering method[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(6): 635-639. | |
40 | 张维涛, 陈延信, 赵博, 等. 富铝煤矸石低钙烧结法提铝的实验研究[J]. 煤炭转化, 2022, 45(3): 61-70. |
Zhang W T, Chen Y X, Zhao B, et al. Experimental study on extraction of aluminum from aluminum-rich coal gangue by low-calcium sintering[J]. Coal Conversion, 2022, 45(3): 61-70. | |
41 | 何星星. 超(亚)临界水热活化联合盐酸酸浸提取煤矸石中硅、铝的研究[D]. 太原: 太原理工大学, 2017. |
He X X. Study on extraction silicon and aluminum from coal gangue by supercritical (subcritical) hydrothermal activation combined with hydrochloric leaching[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
42 | 董玲. 煤矸石酸浸取提取Al2O3和Fe2O3技术研究[D]. 北京: 中国矿业大学(北京), 2018. |
Dong L. Research on aluminum and iron oxide recovery from coal gangue through acid leaching[D]. Beijing: China University of Mining & Technology, Beijing, 2018. | |
43 | 张楠楠. 结晶氯化铝热分解制备冶金级氧化铝的研究[D]. 沈阳: 东北大学, 2018. |
Zhang N N. Study on the preparation of metallurgical grade alumina by the thermal decomposition of aluminum chloride hexahydrate[D]. Shenyang: Northeastern University, 2018. | |
44 | 张宇娟, 孙俊民, 吕国志, 等. 煤矸石中氧化铝盐酸浸出动力学[J]. 中国有色金属学报, 2023, 33(6): 1932-1942. |
Zhang Y J, Sun J M, Lyu G Z, et al. Kinetic study on hydrochloric acid leaching of alumina from coal gangue[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(6): 1932-1942. | |
45 | Lin M, Liu Y Y, Lei S M, et al. High-efficiency extraction of Al from coal-series kaolinite and its kinetics by calcination and pressure acid leaching[J]. Applied Clay Science, 2018, 161: 215-224. |
46 | 刘成龙, 夏举佩, 张永波. 酸浸提取煤矸石中氧化铝工艺优化及其动力学[J]. 过程工程学报, 2015, 15(4): 579-583. |
Liu C L, Xia J P, Zhang Y B. Optimization and kinetics on extraction of alumina from coal gangue by acid leaching[J]. The Chinese Journal of Process Engineering, 2015, 15(4): 579-583. | |
47 | 李浩林, 夏举佩, 曾德恢, 等. 加压酸浸煤矸石中氧化铝工艺及动力学研究[J]. 煤炭转化, 2020, 43(2): 89-96. |
Li H L, Xia J P, Zeng D H, et al. Dynamics analysis and technical of leaching alumina from coal gangue by pressured acid leaching process[J]. Coal Conversion, 2020, 43(2): 89-96. | |
48 | 李浩林, 曾德恢, 郑光亚, 等. 低温中和-加压酸浸提取煤矸石中铝铁[J]. 化工进展, 2021, 40(7): 4011-4020. |
Li H L, Zeng D H, Zheng G Y, et al. Extraction of aluminum and iron from coal gangue by low temperature neutralization-pressure acid leaching[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4011-4020. | |
49 | Yang Q C, Zhang F, Deng X J, et al. Extraction of alumina from alumina rich coal gangue by a hydro-chemical process[J]. Royal Society Open Science, 2020, 7(4): 192132. |
50 | 薛茹君, 吴玉程, 陈晓玲. 煤系高岭土制取高纯氧化铝: 萃取除铁[J]. 矿物学报, 2009, 29(2): 164-168. |
Xue R J, Wu Y C, Chen X L. Preparation of ultra-pure and ultra-fine alumina from kaolinite in coal measures—extraction separation of FeⅢ[J]. Acta Mineralogica Sinica, 2009, 29(2): 164-168. | |
51 | 师垒垒. 高铁低铝煤矸石综合利用的基础研究[D]. 昆明: 昆明理工大学, 2013. |
Shi L L. Basic research on comprehensive utilization of high-iron and low-alumina coal gangue[D].Kunming: Kunming University of Science and Technology, 2013. | |
52 | 刘成龙, 李艳, 梁浩, 等. 基于环境友好的酸浸煤矸石制备α-氧化铁研究[J]. 无机盐工业, 2018, 50(12): 64-67. |
Liu C L, Li Y, Liang H, et al. Preparation of α-Fe2O3 products based on environmentally friendly acid leaching of coal gangue[J]. Inorganic Chemicals Industry, 2018, 50(12): 64-67. | |
53 | 夏举佩, 刘成龙, 杨荣, 等. 高铁低铝煤矸石酸法提取铝、铁研究[J]. 安全与环境学报, 2015, 15(3): 248-251. |
Xia J P, Liu C L, Yang R, et al. A new approach to acid leaching separation of aluminum and iron from the iron-abundant and aluminum-low coal gangue[J]. Journal of Safety and Environment, 2015, 15(3): 248-251. | |
54 | 董玲, 赵洪宇, 舒元锋, 等. 煤矸石中Fe2O3浸出试验研究[J]. 煤炭技术, 2015, 34(11): 256-258. |
Dong L, Zhao H Y, Shu Y F, et al. Experimental study on Fe2O3 leaching from coal gangue[J]. Coal Technology, 2015, 34(11): 256-258. | |
55 | 孔德顺, 范佳鑫, 石开仪, 等. 高铁煤矸石酸浸液合成氧化铁红的实验研究[J]. 无机盐工业, 2013, 45(7): 56-58. |
Kong D S, Fan J X, Shi K Y, et al. Experimental study on preparation of iron oxide red from acid leaching solution of high-iron coal gangue[J]. Inorganic Chemicals Industry, 2013, 45(7): 56-58. | |
56 | 张泽琳, 葛小冬. 煤矸石中硫铁矿工业化分选研究进展[J]. 煤炭技术, 2016, 35(10): 293-295. |
Zhang Z L, Ge X D. Advances in industrialization separation of iron pyrite from coal gangue[J]. Coal Technology, 2016, 35(10): 293-295. | |
57 | 郑雅杰, 龚竹青, 陈白珍, 等. 硫铁矿烧渣湿法制备铁系产品的原理和途径分析[J]. 环境污染治理技术与设备, 2001(1): 48-54. |
Zheng Y J, Gong Z Q, Chen B Z, et al. Preparation principle and path analysis of iron-based products from iron pyrite cinder by wet method[J]. Technigues and Equipment for Enviro.Poll.Cont., 2001(1): 48-54. | |
58 | 张磊. 高硫煤矸石分选试验研究[D]. 昆明: 昆明理工大学, 2019. |
Zhang L. Experimental study on separation of high sulfur coal gangue[D].Kunming: Kunming University of Science and Technology, 2019. | |
59 | 张晋霞, 邹玄, 张晓亮. 从煤矸石中回收黄铁矿的选矿工艺研究[J]. 煤炭技术, 2015, 34(11): 312-315. |
Zhang J X, Zou X, Zhang X L. Research on mineral processing technology for recycling pyrite from coal gangue[J]. Coal Technology, 2015, 34(11): 312-315. | |
60 | 杨喜云. 硫铁矿烧渣制备铁黑颜料和Fe3O4磁粉及基础理论研究[D]. 长沙: 中南大学, 2005. |
Yang X Y. Study on preparation of iron oxide black pigment and magnetite powder from pyrite cinder and their fundamental theories[D]. Changsha: Central South University, 2005. | |
61 | 张仲伟. 用硫铁矿烧渣制备高纯氧化铁红新工艺的研究[D]. 武汉: 武汉理工大学, 2004. |
Zhang Z W. New preparation technology of high purity ferric oxide red from pyrite cinder[D]. Wuhan: Wuhan University of Technology, 2004. | |
62 | 张吉元, 柳丹丹, 郭晓方, 等. 赤泥-煤矸石协同还原焙烧回收Fe、Al有价元素[J]. 环境工程学报, 2021, 15(10): 3306-3315. |
Zhang J Y, Liu D D, Guo X F, et al. Valuable element recovery of Fe and Al by reduction roasting of red mud and coal gangue[J]. Chinese Journal of Environmental Engineering, 2021, 15(10): 3306-3315. | |
63 | Jin J P, Liu X, Yuan S, et al. Innovative utilization of red mud through co-roasting with coal gangue for separation of iron and aluminum minerals[J]. Journal of Industrial and Engineering Chemistry, 2021, 98: 298-307. |
64 | 刘成龙, 夏举佩. 高铁钛型煤矸石中脱铁富钛试验研究[J]. 硅酸盐通报, 2015, 34(3): 664-669. |
Liu C L, Xia J P. Experimental study on the iron removal and titanium enrichment from high iron and high titanium content of coal gangue[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(3): 664-669. | |
65 | 刘成龙, 谢宇充, 夏举佩, 等. 煤矸石中和渣酸化提取铝、钛实验研究[J]. 硅酸盐通报, 2015, 34(4): 966-972. |
Liu C L, Xie Y C, Xia J P, et al. Study on extracting aluminum and titanium from neutral residues of coal gangue by acid leaching[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(4): 966-972. | |
66 | 刘成龙, 周莉莉, 夏举佩, 等. 基于响应曲面法高效浸出煤矸石中钛的工艺优化[J]. 矿产综合利用, 2021(6): 59-65. |
Liu C L, Zhou L L, Xia J P, et al. Optimization of high-efficiency leaching of titanium from coal gangue with response surface method[J]. Multipurpose Utilization of Mineral Resources, 2021(6): 59-65. | |
67 | 李科, 杜红伟, 石星昊. 一种利用磁选在煤矸石中提取铁钛的方法: 114229890A[P]. 2022-03-25. |
Li K, Du H W, Shi X H. Method for extracting iron and titanium from coal gangue through magnetic separation: 114229890A[P]. 2022-03-25. | |
68 | 王现丽, 吴俊峰, 时鹏辉. 利用煤矸石制取高纯度超微细钛白粉的试验研究[J]. 平顶山工学院学报, 2008, 17(2): 31-32, 40. |
Wang X L, Wu J F, Shi P H. Experimental study of making top pure and minuteness titanium from coal gangue[J]. Journal of Pingdingshan Institute of Technology, 2008, 17(2): 31-32, 40. | |
69 | 时鹏辉. 利用煤矸石制取钛白粉的试验研究[J]. 电力环境保护, 2008, 24(5): 56-57. |
Shi P H. Experimental study of making titanium from coal gangue[J]. Electric Power Environmental Protection, 2008, 24(5): 56-57. | |
70 | 王雪. 新疆部分煤矸石中铌、锆、铒、镓富集规律与赋存状态研究[D]. 乌鲁木齐: 新疆师范大学, 2017. |
Wang X. Study on enrichment regularities and occurrence states of Nb, Zr, Er and Ga in some coal gangues of Xinjiang[D]. Urumqi: Xinjiang Normal University, 2017. | |
71 | Dai S F, Ren D Y, Chou C L, et al. Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94: 3-21. |
72 | Ketris M P, Yudovich Y E. Estimations of Clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78(2): 135-148. |
73 | Dai S F, Zhou Y P, Ren D Y, et al. Geochemistry and mineralogy of the Late Permian coals from the Songzo Coalfield, Chongqing, southwestern China[J]. Science in China Series D: Earth Sciences, 2007, 50(5): 678-688. |
74 | 刘帮军, 林明月. 山西平朔矿区9#煤中锂的富集机理及物源研究[J]. 煤炭技术, 2015, 34(8): 115-117. |
Liu B J, Lin M Y. Enrichment mechanism and material sources of lithium in Li-bearing coal seam No.9 from Pingshuo mining district of Shanxi Province[J]. Coal Technology, 2015, 34(8): 115-117. | |
75 | 孙蓓蕾, 孔艳磊, 王国权, 等. 高锂无烟煤中不同赋存态锂同位素组成趋同特征及其机理[J]. 煤炭学报, 2022, 47(5): 1773-1781. |
Sun B L, Kong Y L, Wang G Q, et al. Convergence and its mechanism of lithium isotopic composition with different occurrence states in Li-rich anthracite[J]. Journal of China Coal Society, 2022, 47(5): 1773-1781. | |
76 | 马志斌, 张森, 单雪媛, 等. 煤、煤泥和煤矸石燃烧过程锂镓稀土元素的迁移规律[J]. 化工学报, 2021, 72(6): 3349-3358. |
Ma Z B, Zhang S, Shan X Y, et al. Migration of lithium, gallium and rare earth elements in coal, coal slime, and coal gangue during combustion[J]. CIESC Journal, 2021, 72(6): 3349-3358. | |
77 | 赵蕾, 王西勃, 代世峰. 煤系中的锂矿产:赋存分布、成矿与资源潜力[J]. 煤炭学报, 2022, 47(5): 1750-1760. |
Zhao L, Wang X B, Dai S F. Lithium resources in coal-bearing strata: occurrence, mineralization, and resource potential[J]. Journal of China Coal Society, 2022, 47(5): 1750-1760. | |
78 | 李宝庆, 庄新国, 宁树正, 等. 稀土-锆(铪)-铌(钽)-镓的活化、迁移和富集机理: 以务正道地区上二叠统吴家坪组煤系为例[J]. 煤炭学报, 2022, 47(5): 1822-1839. |
Li B Q, Zhuang X G, Ning S Z, et al. Mobilization, migration, and enrichment mechanism of rare earth elements-Zr(Hf)-Nb(Ta)-Ga: a case study of coal-bearing strata within Upper Permian Wujiaping Formation in Wuzhengdao region[J]. Journal of China Coal Society, 2022, 47(5): 1822-1839. | |
79 | 周建飞, 王金喜, 白观累, 等. 山西平朔矿区11#煤中镓的分布特征及富集因素[J]. 煤炭技术, 2014, 33(11): 82-84. |
Zhou J F, Wang J X, Bai G L, et al. Distribution characteristics and enrichment factor Ga in coal seam 11# from Pingshuo mining in Shanxi[J]. Coal Technology, 2014, 33(11): 82-84. | |
80 | 秦勇, 王文峰, 程爱国, 等. 首批煤炭国家规划矿区煤中镓的成矿前景[J]. 中国煤炭地质, 2009, 21(1): 17-21, 26. |
Qin Y, Wang W F, Cheng A G, et al. Study of ore-forming potential of gallium in coal for the first group of state programmed mining districts[J]. Coal Geology of China, 2009, 21(1): 17-21, 26. | |
81 | 刘东娜, 曾凡桂, 赵峰华, 等. 山西省煤系伴生三稀矿产资源研究现状及找矿前景[J]. 煤田地质与勘探, 2018, 46(4): 1-7. |
Liu D N, Zeng F G, Zhao F H, et al. Status and prospect of research for three type coal-associated rare earth resources in coal measures in Shanxi Province[J]. Coal Geology & Exploration, 2018, 46(4): 1-7. | |
82 | 李聪聪, 杜芳鹏, 雒铮, 等. 四川古叙矿区石屏煤矿C19煤层煤质及煤中元素分布特征[J]. 中国矿业, 2019, 28(S2): 282-287, 291. |
Li C C, Du F P, Luo Z, et al. Coal quality and element distribution characteristics of C19 coal seam in Shiping coal mine, Guxu mining area, Sichuan Province[J]. China Mining Magazine, 2019, 28(S2): 282-287, 291. | |
83 | Zeng R S, Zhuang X G, Koukouzas N, et al. Characterization of trace elements in sulphur-rich Late Permian coals in the Heshan coal field, Guangxi, South China[J]. International Journal of Coal Geology, 2005, 61(1/2): 87-95. |
84 | Talan D, Huang Q Q. A review study of rare earth, cobalt, lithium, and manganese in coal-based sources and process development for their recovery[J]. Minerals Engineering, 2022, 189: 107897. |
85 | 秦身钧, 徐飞, 崔莉, 等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术, 2022, 50(3): 1-38. |
Qin S J, Xu F, Cui L, et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology, 2022, 50(3): 1-38. | |
86 | Zhang P P, Han Z, Jia J M, et al. Occurrence and distribution of gallium, scandium, and rare earth elements in coal gangue collected from Junggar Basin, China[J]. International Journal of Coal Preparation and Utilization, 2019, 39(7): 389-402. |
87 | Chen H C, Zhang L, Pan J H, et al. Study on modes of occurrence and enhanced leaching of critical metals (lithium, niobium, and rare earth elements) in coal gangue[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108818. |
88 | 邹建华, 王慧, 刘述平, 等. 重庆中梁山煤田凝灰岩中战略性金属的浸出试验[J]. 煤炭学报, 2022, 47(5): 1876-1884. |
Zou J H, Wang H, Liu S P, et al. Leaching test of strategic metals in the tuff from the Zhongliangshan Coalfield, Chongqing[J]. Journal of China Coal Society, 2022, 47(5): 1876-1884. | |
89 | Zou J H, Tian H M, Wang Z. Leaching process of rare earth elements, gallium and niobium in a coal-bearing strata-hosted rare metal deposit—a case study from the Late Permian tuff in the Zhongliangshan Mine, Chongqing[J]. Metals, 2017, 7(5): 174. |
90 | Qin Q Z, Deng J S, Geng H H, et al. An exploratory study on strategic metal recovery of coal gangue and sustainable utilization potential of recovery residue[J]. Journal of Cleaner Production, 2022, 340: 130765. |
91 | Shao S, Ma B Z, Wang C Y, et al. Extraction of valuable components from coal gangue through thermal activation and HNO3 leaching[J]. Journal of Industrial and Engineering Chemistry, 2022, 113: 564-574. |
92 | Zhang L, Chen H C, Pan J H, et al. Extraction of lithium from coal gangue by a roasting-leaching process[J]. International Journal of Coal Preparation and Utilization, 2023, 43(5): 863-878. |
93 | 成俊伟, 任卫国, 王建成, 等. 吸附法提取煤矸石中锂的工艺[J]. 化工进展, 2019, 38(8): 3589-3595. |
Cheng J W, Ren W G, Wang J C, et al. Extraction of lithium from coal gangue by manganese ion sieve adsorption[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3589-3595. | |
94 | 马晨, 朱晓波, 李望, 等. 强化助浸回收煤矸石中镓的实验研究[J]. 稀有金属与硬质合金, 2022, 50(4): 24-27, 32. |
Ma C, Zhu X B, Li W, et al. Experimental study on recovery of gallium from coal gangue by enhanced leaching[J]. Rare Metals and Cemented Carbides, 2022, 50(4): 24-27, 32. | |
95 | 郭文超, 李望, 朱晓波, 等. P507萃取煤矸石硫酸浸出液中镓的实验研究[J]. 稀有金属与硬质合金, 2022, 50(4): 28-32. |
Guo W C, Li W, Zhu X B, et al. Experimental study on extraction of gallium from sulfuric acid leaching solution of coal gangue by using P507[J]. Rare Metals and Cemented Carbides, 2022, 50(4): 28-32. | |
96 | 程芳琴, 王波, 成怀刚. 粉煤灰提取高附加值有价元素的技术现状及进展[J]. 无机盐工业, 2017, 49(2): 1-4. |
Cheng F Q, Wang B, Cheng H G. Research progress of extracting high added value elements from fly ash[J]. Inorganic Chemicals Industry, 2017, 49(2): 1-4. | |
97 | 薄朋慧, 吴士豪, 王炎, 等. 粉煤灰中有价金属元素铝、镓、锂活化浸出提取研究进展[J]. 应用化工, 2019, 48(8): 1924-1929. |
Bo P H, Wu S H, Wang Y, et al. Research progress of activated leaching and extraction of valuable aluminum, gallium and lithium metal elements from fly ash[J]. Applied Chemical Industry, 2019, 48(8): 1924-1929. | |
98 | 张惠, 康博文, 田春秋. 全球稀土二次资源回收利用进展[J]. 矿产综合利用, 2022(3): 86-94. |
Zhang H, Kang B W, Tian C Q. Analysis on recovery and utilization of global rare earth secondary resources[J]. Multipurpose Utilization of Mineral Resources, 2022(3): 86-94. | |
99 | Dai S F, Luo Y B, Seredin V V, et al. Revisiting the Late Permian coal from the Huayingshan, Sichuan, southwestern China: enrichment and occurrence modes of minerals and trace elements[J]. International Journal of Coal Geology, 2014, 122: 110-128. |
100 | 黄文辉, 久博, 李媛. 煤中稀土元素分布特征及其开发利用前景[J]. 煤炭学报, 2019, 44(1): 287-294. |
Huang W H, Jiu B, Li Y. Distribution characteristics of rare earth elements in coal and its prospects on development and exploitation[J]. Journal of China Coal Society, 2019, 44(1): 287-294. | |
101 | Wu G Q, Wang T, Wang J W, et al. Occurrence forms of rare earth elements in coal and coal gangue and their combustion products[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1498-1505. |
102 | Laudal D A, Benson S A, Palo D, et al. Rare earth elements in North Dakota lignite coal and lignite-related materials[J]. Journal of Energy Resources Technology, 2018, 140(6): 062205. |
103 | 张红. 西山杜儿坪矿煤矸石中元素与多环芳烃的地球化学特征研究[D]. 太原: 太原理工大学, 2012. |
Zhang H. Study on the characteristics of elements and PAHs of coal gangue of duerping coal deposit[D]. Taiyuan: Taiyuan University of Technology, 2012. | |
104 | 蒲伟, 孙蓓蕾, 李珍, 等. 马兰2号煤层夹矸微量与稀土元素地球化学特征及其地质意义[J]. 煤炭学报, 2012, 37(10): 1709-1716. |
Pu W, Sun B L, Li Z, et al. Geochemistry of trace and rare elements in No.2 coalseam parting in Malan coal mine and its geological implication[J]. Journal of China Coal Society, 2012, 37(10): 1709-1716. | |
105 | 代世峰, 任德贻, 李生盛. 煤及顶板中稀土元素赋存状态及逐级化学提取[J]. 中国矿业大学学报, 2002, 31(5): 349-353. |
Dai S F, Ren D Y, Li S S. Occurrence and sequential chemical extraction of rare earth element in coals and seam roofs[J]. Journal of China University of Mining & Technology, 2002, 31(5): 349-353. | |
106 | 聂天成. 焙烧活化对煤矸石中稀土元素的赋存及浸出影响研究[D]. 徐州: 中国矿业大学, 2021. |
Nie T C. Study on the effect of roasting activation on the occurrence and leaching of rare earth elements in coal refuse[D]. Xuzhou: China University of Mining and Technology, 2021. | |
107 | 杨梅. 淮南煤田(以朱集矿为例)侵入岩和煤中稀土元素地球化学特征[D]. 合肥: 中国科学技术大学, 2012. |
Yang M. Geochemistry of rare earth elements in intrusive rocks and coals in Huainan Coalfield: a case study of Zhuji coal mine[D]. Hefei: University of Science and Technology of China, 2012. | |
108 | 李梦闪, 黄伟欣, 张臻悦, 等. 煤及其副产物中稀土元素的赋存特征与选矿富集研究进展[J]. 有色金属(选矿部分), 2021(6): 61-81. |
Li M S, Huang W X, Zhang Z Y, et al. A review on occurrence characteristics and beneficiation enrichments of rare earth elements in coal and its by-products[J]. Nonferrous Metals (Mineral Processing Section), 2021(6): 61-81. | |
109 | Zhang W C, Noble A, Yang X B, et al. A comprehensive review of rare earth elements recovery from coal-related materials[J]. Minerals, 2020, 10(5): 451. |
110 | Zhang W C, Yang X B, Honaker R Q. Association characteristic study and preliminary recovery investigation of rare earth elements from Fire Clay seam coal middlings[J]. Fuel, 2018, 215: 551-560. |
111 | Honaker R Q, Groppo J, Yoon R H, et al. Process evaluation and flowsheet development for the recovery of rare earth elements from coal and associated byproducts[J]. Minerals & Metallurgical Processing, 2017, 34(3): 107-115. |
112 | Lin R H, Howard B H, Roth E A, et al. Enrichment of rare earth elements from coal and coal by-products by physical separations[J]. Fuel, 2017, 200: 506-520. |
113 | 杨凡. 煤系稀土元素柠檬酸浸出研究[D]. 徐州: 中国矿业大学, 2022. |
Yang F. Study on citric acid leaching of rare earth elements in coal measures[D]. Xuzhou: China University of Mining and Technology, 2022. | |
114 | Montross S N, Yang J, Britton J, et al. Leaching of rare earth elements from central Appalachian coal seam underclays[J]. Minerals, 2020, 10(6): 577. |
115 | Yang J, Montross S, Verba C. Assessing the extractability of rare earth elements from coal preparation fines refuse using an organic acid lixiviant[J]. Mining, Metallurgy & Exploration, 2021, 38(4): 1701-1709. |
116 | 陈博, 来雅文, 肖国拾, 等. 煤矸石中稀土元素的提取富集工艺[J]. 世界地质, 2009, 28(2): 257-260. |
Chen B, Lai Y W, Xiao G S, et al. Technique for extraction and concentration of rare earth elements in gangue[J]. Global Geology, 2009, 28(2): 257-260. | |
117 | Zhang W C, Honaker R. Characterization and recovery of rare earth elements and other critical metals (Co, Cr, Li, Mn, Sr, and V) from the calcination products of a coal refuse sample[J]. Fuel, 2020, 267: 117236. |
118 | Ji B, Li Q, Tang H H, et al. Rare earth elements (REEs) recovery from coal waste of the Western Kentucky No. 13 and Fire Clay seams. Part Ⅱ: Re-investigation on the effect of calcination[J]. Fuel, 2022, 315: 123145. |
119 | Kuppusamy V K, Kumar A, Holuszko M. Simultaneous extraction of clean coal and rare earth elements from coal tailings using alkali-acid leaching process[J]. Journal of Energy Resources Technology, 2019, 141(7): 070708. |
120 | 辜芳, 李银, 李浩林, 等. 煤矸石酸溶液中稀土混合萃取优化实验研究[J]. 化学工程, 2020, 48(5): 31-36. |
Gu F, Li Y, Li H L, et al. Study on optimized experiment of mixed extraction of rare earths from acid solution of coal gangue[J]. Chemical Engineering (China), 2020, 48(5): 31-36. | |
121 | 金韬. 铁/硫氧化微生物协同催化氧化煤矸石产酸作用研究[D]. 徐州: 中国矿业大学, 2022. |
Jin T. Study on synergistic catalytic oxidation of coal gangue to produce acid by iron/sulfur oxidizing microorganisms[D]. Xuzhou: China University of Mining and Technology, 2022. | |
122 | 申丽, 赵红波, 邱冠周. 低碳生物冶金技术进展[J]. 中国矿业大学学报, 2022, 51(3): 419-433. |
Shen L, Zhao H B, Qiu G Z. Review of low-carbon bio-hydrometallurgical technology[J]. Journal of China University of Mining & Technology, 2022, 51(3): 419-433. | |
123 | Sarswat P K, Leake M, Allen L, et al. Efficient recovery of rare earth elements from coal based resources: a bioleaching approach[J]. Materials Today Chemistry, 2020, 16: 100246. |
124 | 曾鹏, 谢海云, 晋艳玲, 等. 我国煤矸石的特性及其提取氧化铝研究进展[J]. 矿产保护与利用, 2022, 42(6): 21-29. |
Zeng P, Xie H Y, Jin Y L, et al. A review on characteristics and alumina extraction of coal gangue in China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 21-29. | |
125 | 马越. “一步酸溶法”高铝粉煤灰提取氧化铝工艺技术研究[J]. 中国金属通报, 2021(11): 87-88. |
Ma Y. Study on extraction technology of alumina from high alumina fly ash by “one-step acid dissolution method”[J]. China Metal Bulletin, 2021(11): 87-88. | |
126 | 陈东, 曹坤. 准格尔矿区煤矸石综合利用新途径[J]. 中国煤炭, 2017, 43(10): 132-136. |
Chen D, Cao K. New method for coal gangue comprehensive utilization in Jungar mining area[J]. China Coal, 2017, 43(10): 132-136. | |
127 | 王志明. 粉煤灰盐酸法提取氧化铝分离除杂技术综述[J]. 化工管理, 2023(7): 78-80. |
Wang Z M. Review on separation and purification technology of alumina extracted from coal ash by hydrochloric acid method[J]. Chemical Engineering Management, 2023(7): 78-80. | |
128 | 万亚萌, 王宝庆, 王丹, 等. 粉煤灰回收氧化铝工艺研究进展[J]. 无机盐工业, 2016, 48(11): 7-11. |
Wan Y M, Wang B Q, Wang D, et al. Research progress of alumina recovery technology from coal fly ash[J]. Inorganic Chemicals Industry, 2016, 48(11): 7-11. | |
129 | 李世春, 池君洲, 王丽萍, 等. 从废弃物中回收稀土金属钪的研究进展[J]. 稀有金属与硬质合金, 2023, 51(1): 10-16. |
Li S C, Chi J Z, Wang L P, et al. Research progress on recovery of rare earth metal scandium from wastes[J]. Rare Metals and Cemented Carbides, 2023, 51(1): 10-16. | |
130 | 李超, 苗家兵, 王丽萍, 等. 蒸发母液中锂的提取[J]. 化工进展, 2022, 41(S1): 637-642. |
Li C, Miao J B, Wang L P, et al. Extraction of lithium from evaporation mother liquor[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 637-642. | |
131 | 郭昭华. 粉煤灰“一步酸溶法”提取氧化铝工艺技术及工业化发展研究[J]. 煤炭工程, 2015, 47(7): 5-8. |
Guo Z H. Study and industrialization development of one-step acid dissolution technology for alumina extraction from fly ash[J]. Coal Engineering, 2015, 47(7): 5-8. | |
132 | 刘大锐, 许立军, 李世春, 等. 粉煤灰中战略金属锂的回收研究进展[J]. 无机盐工业, 2023, 55(1): 56-63. |
Liu D R, Xu L J, Li S C, et al. Research progress of recovery of strategic metal lithium from fly ash[J]. Inorganic Chemicals Industry, 2023, 55(1): 56-63. | |
133 | 刘成龙. 煤矸石酸浸提取工艺与机理研究[D]. 昆明: 昆明理工大学, 2015. |
Liu C L. Study on acid leaching extraction technology and mechanism of coal gangue[D]. Kunming: Kunming University of Science and Technology, 2015. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[3] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[4] | 王倩, 李神勇, 康帅, 庞薇, 郝龙龙, 秦身钧. 粉煤灰分质高效利用预处理技术的研究进展[J]. 化工学报, 2023, 74(3): 1010-1032. |
[5] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[6] | 罗欣宜, 冯超, 刘晶, 乔瑜. 污泥不同热处理工艺产物磷的浸出回收实验研究[J]. 化工学报, 2022, 73(9): 4034-4044. |
[7] | 杜峰, 尹思琦, 罗辉, 邓文安, 李传, 黄振薇, 王文静. H2在Mo x S y 团簇上吸附解离的尺寸效应研究[J]. 化工学报, 2022, 73(9): 3895-3903. |
[8] | 戴文华, 辛忠. Si掺杂对Cu/ZrO2催化CO2加氢制甲醇性能的影响[J]. 化工学报, 2022, 73(8): 3586-3596. |
[9] | 褚有群, 葛展榜, 焦玉峰, 张建平, 郭冠璇, 朱英红. 有机-水混合溶剂中氯离子对C—H键的电氧化腈化性能[J]. 化工学报, 2022, 73(7): 3018-3025. |
[10] | 黄仕元, 邓简, 袁瀚钦, 王国华, 吴兴良. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056. |
[11] | 郑涛, 刘海燕, 张睿, 孟祥海, 岳源源, 刘植昌. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351. |
[12] | 郭志强, 燕可洲, 张吉元, 柳丹丹, 高阳艳, 郭彦霞. 煤矸石/粉煤灰对赤泥钠化还原焙烧反应的影响机制[J]. 化工学报, 2022, 73(5): 2194-2205. |
[13] | 刘宇喆, 李成才, 李琳, 王少辉, 刘培慧, 王同华. 活性炭的微结构与超级电容器性能的构效关系[J]. 化工学报, 2022, 73(4): 1807-1816. |
[14] | 韩雪, 高生旺, 王国英, 夏训峰. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753. |
[15] | 王建, 雷子萱, 姚家钰, 李建, 刘育红. 对苯二甲醛酚醛树脂的制备及其固化动力学研究[J]. 化工学报, 2022, 73(3): 1403-1415. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||