化工学报 ›› 2023, Vol. 74 ›› Issue (1): 438-448.DOI: 10.11949/0438-1157.20221200
白宇恩(), 张彬瑞, 刘东阳, 赵亮(), 高金森, 徐春明
收稿日期:
2022-09-01
修回日期:
2023-01-10
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
赵亮
作者简介:
白宇恩(1994—),男,博士研究生,ccutbye@126.com
基金资助:
Yuen BAI(), Binrui ZHANG, Dongyang LIU, Liang ZHAO(), Jinsen GAO, Chunming XU
Received:
2022-09-01
Revised:
2023-01-10
Online:
2023-01-05
Published:
2023-03-20
Contact:
Liang ZHAO
摘要:
采用不同浓度碱液处理制备了具有不同酸性质的多级孔HZSM-5分子筛,并考察其酸性能与孔结构变化对催化裂化(FCC)汽油中C5烯烃催化裂解性能的影响。利用X射线衍射(XRD)、N2吸附脱附、氨气程序升温脱附技术(NH3-TPD)、吡啶红外(Py-IR)和扫描电镜(SEM)等表征手段研究了HZSM-5分子筛的结构、形貌、酸性质和孔道性能。研究结果表明,适宜浓度的碱液处理可以提高HZSM-5分子筛的强Brønsted (B酸)酸量和介孔体积,显著提高C5烯烃转化率和乙烯、丙烯的收率。当碱液浓度为0.2 mol·L-1,HZSM-5分子筛强B酸中心和介孔体积之间的协同作用促进了C5烯烃的高效转化,转化率为84.8%(质量分数),乙丙烯总收率为86.0%(质量分数),分别比未处理的HZSM-5分子筛增加4.4%和15.5%。
中图分类号:
白宇恩, 张彬瑞, 刘东阳, 赵亮, 高金森, 徐春明. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448.
Yuen BAI, Binrui ZHANG, Dongyang LIU, Liang ZHAO, Jinsen GAO, Chunming XU. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene[J]. CIESC Journal, 2023, 74(1): 438-448.
图1 实验装置流程1—原料油罐;2—进料泵1;3—原料水罐;4—进料泵2;5—进液压力表;6—稳压阀;7—气体压力表;8—气体流量计;9—预加热炉;10—反应管;11—加热炉;12—反应压力表;13—备压阀;14—螺旋冷凝罐;15—储液罐;16—液体接样口;17—循环冷凝装置;18—气体接样口
Fig.1 The experimental equipment
C number | nP/% | iP/% | O/% | N/% | A/% | C sum/% |
---|---|---|---|---|---|---|
4 | 1.69 | 0.85 | 3.60 | 0 | 0 | 6.14 |
5 | 4.87 | 25.82 | 38.56 | 0.38 | 0 | 69.63 |
6 | 0.94 | 14.01 | 7.38 | 0.75 | 0.20 | 23.28 |
7 | 0.03 | 0.29 | 0.29 | 0.03 | 0.10 | 0.74 |
8 | 0 | 0 | 0 | 0 | 0.15 | 0.15 |
9 | 0 | 0 | 0 | 0 | 0.09 | 0.09 |
total | 7.53 | 40.97 | 49.83 | 1.15 | 0.54 | 100.00 |
表1 原料汽油组成(质量分数)
Table 1 The composition (mass fraction) of raw gasoline
C number | nP/% | iP/% | O/% | N/% | A/% | C sum/% |
---|---|---|---|---|---|---|
4 | 1.69 | 0.85 | 3.60 | 0 | 0 | 6.14 |
5 | 4.87 | 25.82 | 38.56 | 0.38 | 0 | 69.63 |
6 | 0.94 | 14.01 | 7.38 | 0.75 | 0.20 | 23.28 |
7 | 0.03 | 0.29 | 0.29 | 0.03 | 0.10 | 0.74 |
8 | 0 | 0 | 0 | 0 | 0.15 | 0.15 |
9 | 0 | 0 | 0 | 0 | 0.09 | 0.09 |
total | 7.53 | 40.97 | 49.83 | 1.15 | 0.54 | 100.00 |
Sample | Surface area/(m2·g-1) | Rate of change/% | Pore volume/(cm3·g-1) | Dpore/nm | ||
---|---|---|---|---|---|---|
Total | Micropore | Mesopore | ||||
HZSM-5 | 273 | — | 0.17 | 0.12 | 0.05 | 2.46 |
AT1 | 322 | 17.95 | 0.19 | 0.12 | 0.07 | 2.38 |
AT2 | 321 | 17.58 | 0.20 | 0.12 | 0.08 | 2.46 |
AT3 | 323 | 18.32 | 0.19 | 0.12 | 0.07 | 2.40 |
AT4 | 305 | 11.72 | 0.24 | 0.10 | 0.14 | 2.73 |
AT5 | 303 | 10.99 | 0.26 | 0.09 | 0.17 | 3.10 |
表2 不同浓度碱液处理HZSM-5的孔数据
Table 2 Pore data of HZSM-5 treated with different concentrations of alkali
Sample | Surface area/(m2·g-1) | Rate of change/% | Pore volume/(cm3·g-1) | Dpore/nm | ||
---|---|---|---|---|---|---|
Total | Micropore | Mesopore | ||||
HZSM-5 | 273 | — | 0.17 | 0.12 | 0.05 | 2.46 |
AT1 | 322 | 17.95 | 0.19 | 0.12 | 0.07 | 2.38 |
AT2 | 321 | 17.58 | 0.20 | 0.12 | 0.08 | 2.46 |
AT3 | 323 | 18.32 | 0.19 | 0.12 | 0.07 | 2.40 |
AT4 | 305 | 11.72 | 0.24 | 0.10 | 0.14 | 2.73 |
AT5 | 303 | 10.99 | 0.26 | 0.09 | 0.17 | 3.10 |
Sample | Total acid(200℃) | Strong acid(350℃) | Weak acid | ||||
---|---|---|---|---|---|---|---|
(L+B)/(μmol·g-1) | L/(μmol·g-1) | B/(μmol·g-1) | L/(μmol·g-1) | B/(μmol·g-1) | L/(μmol·g-1) | B/(μmol·g-1) | |
HZSM-5 | 209.87 | 165.83 | 44.04 | 58.86 | 9.39 | 106.97 | 34.65 |
AT1 | 176.12 | 139.98 | 36.14 | 70.21 | 9.78 | 69.77 | 26.36 |
AT2 | 194.76 | 158.80 | 35.96 | 85.68 | 10.50 | 73.12 | 25.46 |
AT3 | 223.01 | 178.85 | 44.16 | 75.17 | 14.59 | 103.68 | 29.57 |
AT4 | 218.30 | 178.54 | 39.76 | 93.88 | 13.68 | 84.66 | 26.08 |
AT5 | 189.02 | 139.74 | 49.28 | 66.82 | 10.11 | 72.92 | 39.17 |
表3 不同浓度碱液处理后的HZSM-5的Py-IR数据
Table 3 Py-IR data of HZSM-5 treated with different concentrations of alkali
Sample | Total acid(200℃) | Strong acid(350℃) | Weak acid | ||||
---|---|---|---|---|---|---|---|
(L+B)/(μmol·g-1) | L/(μmol·g-1) | B/(μmol·g-1) | L/(μmol·g-1) | B/(μmol·g-1) | L/(μmol·g-1) | B/(μmol·g-1) | |
HZSM-5 | 209.87 | 165.83 | 44.04 | 58.86 | 9.39 | 106.97 | 34.65 |
AT1 | 176.12 | 139.98 | 36.14 | 70.21 | 9.78 | 69.77 | 26.36 |
AT2 | 194.76 | 158.80 | 35.96 | 85.68 | 10.50 | 73.12 | 25.46 |
AT3 | 223.01 | 178.85 | 44.16 | 75.17 | 14.59 | 103.68 | 29.57 |
AT4 | 218.30 | 178.54 | 39.76 | 93.88 | 13.68 | 84.66 | 26.08 |
AT5 | 189.02 | 139.74 | 49.28 | 66.82 | 10.11 | 72.92 | 39.17 |
1 | Mohammad F, Seyed M S. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review Ⅲ: Process modeling and simulation[J]. Fuel, 2019, 252: 553-566. |
2 | Amghizar I, Vandewalle L A, van Geem K M, et al. New trends in olefin production[J]. Engineering, 2017, 3(2): 171-178. |
3 | Seyed M S. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review Ⅰ: Thermal cracking review[J]. Fuel, 2015, 140: 102-115. |
4 | Jung J S, Park J W, Seo G. Catalytic cracking of n-octane over alkali-treated MFI zeolites[J]. Applied Catalysis A: General, 2005, 288(1/2): 149-157. |
5 | Jung J S, Kim T J, Seo G. Catalytic cracking of n-octane over zeolites with different pore structures and acidities[J]. Korean Journal of Chemical Engineering, 2004, 21(4): 777-781. |
6 | Hiroshi M, Toshiyuki Y, Hiroyuki I, et al. Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane[J]. Microporous and Mesoporous Materials, 2011, 145(1/2/3): 165-171. |
7 | Joongwon L, Ung G H, Sunhwan H, et al.Catalytic cracking of C5 raffinate to light olefins over lanthanum-containing phosphorous-modified porous ZSM-5: effect of lanthanum content[J]. Fuel Processing Technology, 2013, 109: 189-195. |
8 | Hiroshi M, Toshiyuki Y, Hiroyuki I, et al. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking[J]. Applied Catalysis A: General, 2012, 449: 188-197. |
9 | Yarulina I, Chowdhury A D, Meirer F, et al. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nature Catalysis, 2018, 1(6): 398-411. |
10 | Sheng J, Yan B, Lu W D, et al. Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts[J]. Chemical Society Reviews, 2021, 50(2): 1438-1468. |
11 | Zhang H L, Zhang K, Wang G W, et al. Propane dehydrogenation over core-shell structured Al2O3@Al via hydrothermal oxidation synthesis[J]. Fuel, 2022, 312: 122756. |
12 | Zhong L S, Yu F, An Y L, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623): 84-87. |
13 | Jiao F, Li J J, Pan X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
14 | Chen X B, Zhang X Y, Qin R M, et al. Distribution of nitrogen and oxygen compounds in shale oil distillates and their catalytic cracking performance[J]. Petroleum Science, 2020, 17(6): 1764-1778. |
15 | Gao S B, Zhao Z, Lu X F, et al. Hydrocracking diversity in n-dodecane isomerization on Pt/ZSM-22 and Pt/ZSM-23 catalysts and their catalytic performance for hydrodewaxing of lube base oil[J]. Petroleum Science, 2020, 17(6): 1752-1763. |
16 | Fan Y, Bao X J, Shi G. Hβ/HZSM-5 composite carrier supported catalysts for olefins reduction of FCC gasoline via hydroisomerization and aromatization[J]. Catalysis Letters, 2005, 105(1): 67-75. |
17 | Alipour, S M. Recent advances in naphtha catalytic cracking by nano ZSM-5: a review[J]. Chinese Journal of Catalysis, 2016, 37(5): 671-680. |
18 | Alabdullah M, Rodriguez-Gomez A, Shoinkhorova T, et al. One-step conversion of crude oil to light olefins using a multi-zone reactor[J]. Nature Catalysis, 2021, 4(3): 233-241. |
19 | 刘美佳, 王刚, 张忠东, 等. 碳五烷烃裂解制低碳烯烃反应性能的分析[J]. 化工学报, 2021, 72(10): 5172-5182. |
Liu M J, Wang G, Zhang Z D, et al. Analysis of reaction performance of high efficient pyrolysis of C5 alkanes to light olefins[J]. CIESC Journal, 2021, 72(10): 5172-5182. | |
20 | 黄鑫, 林玉霞, 阎炳会, 等. 失活TS-1高效催化C 4 = 裂解制C 3 = 反应的研究[J]. 化工学报, 2021, 72(10): 5183-5195. |
Huang X, Lin Y X, Yan B H, et al. Deactivated TS-l as an efficient catalyst for catalytic cracking of butene to propene[J]. CIESC Journal, 2021, 72(10): 5183-5195. | |
21 | Aritomo Y, Dingfeng J, Takuji I, et al. Effect of steam during catalytic cracking of n-hexane using P-ZSM-5 catalyst[J]. Catalysis Communications, 2015, 69: 20-24. |
22 | Rahat J, Kohei U, Shinya F, et al. Factors affecting coke formation on H-ZSM-5 in naphtha cracking[J]. Applied Catalysis A: General, 2015, 491: 100-105. |
23 | Galadima A, Muraza O. Recent developments on silicoaluminates and silicoaluminophosphates in the methanol-to-propylene reaction: a mini review[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 4891-4905. |
24 | 忻睦迪, 邢恩会. 三甲基膦和金属氧化物复合改性ZSM-5分子筛及其裂解性能研究[J]. 化工学报, 2021, 72(5): 2657-2668. |
Xin M D, Xing E H. Researches on trimethylphosphine and metal oxide modification on ZSM-5 and their influence on catalytic cracking[J]. CIESC Journal, 2021, 72(5): 2657-2668. | |
25 | 方书起, 石崇, 李攀, 等. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J]. 化工学报, 2020, 71(4): 1637-1645. |
Fang S Q, Shi C, Li P, et al. Study on rapid pyrolysis characteristics of biomass catalyzed by Fe-Zn comodified ZSM-5[J]. CIESC Journal, 2020, 71(4): 1637-1645. | |
26 | Buchanan J S, Santiesteban J G, Haag W O. Mechanistic considerations in acid-catalyzed cracking of olefins[J]. Journal of Catalysis, 1996, 158(1): 279-287. |
27 | Blay V, Epelde E, Miravalles R, et al. Converting olefins to propene: ethene to propene and olefin cracking[J]. Catalysis Reviews, 2018, 60(2): 278-335. |
28 | Sazama P, Dedecek J, Gabova V, et al. Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene[J]. Journal of Catalysis, 2008, 254(2): 180-189. |
29 | Vasant R C, Subhabrata B, Devadas P. Influence of temperature on the product selectivity and distribution of aromatics and C8 aromatic isomers in the conversion of dilute ethene over H-galloaluminosilicate (ZSM-5 type) zeolite[J]. Journal of Catalysis, 2002, 205(2): 398-403. |
30 | Akimitsu M, Yasuharu S, Yasuyoshi I, et al. Selective production of ethylene and propylene via monomolecular cracking of pentene over proton-exchanged zeolites: pentene cracking mechanism determined by spatial volume of zeolite cavity[J]. Journal of Catalysis, 2013, 302: 101-114. |
31 | Bortnovsky O, Sazama P, Wichterlova B. Cracking of pentenes to C2—C4 light olefins over zeolites and zeotypes[J]. Applied Catalysis A: General, 2005, 287(2): 203-213. |
32 | Lin L F, Zhao S F, Zhang D W, et al. Acid strength controlled reaction pathways for the catalytic cracking of 1-pentene to propene over ZSM-5[J]. ACS Catalysis, 2015, 5(7): 4048-4059. |
33 | Song Y Q, Zhu X X, Song Y, et al. An effective method to enhance the stability on-stream of butene aromatization: post-treatment of ZSM-5 by alkali solution of sodium hydroxide[J]. Applied Catalysis A: General, 2006, 302(1): 69-77. |
34 | Zhou F, Gao Y, Ma H X, et al. Catalytic aromatization of methanol over post-treated ZSM-5 zeolites in the terms of pore structure and acid sites properties[J]. Molecular Catalysis, 2017, 438: 37-46. |
35 | Xiao X, Sun B, Wang P, et al. Tuning the density of Brønsted acid sites on mesoporous ZSM-5 zeolite for enhancing light olefins selectivity in the catalytic cracking of n-octane[J]. Microporous and Mesoporous Materials, 2022, 330: 111621. |
36 | Yu Q Q, Zhang Z D, Zhang Z Q, et al. Effect of transition metal nickel on the selectivity of light olefins in n-hexane cracking of Ni/IM-5 zeolite[J]. Industrial & Engineering Chemistry Research, 2022, 61(16): 5401-5409. |
37 | He X Y, Tian Y J, Guo L H, et al. Fabrication of extra-framework Al in ZSM-5 to enhance light olefins production in catalytic cracking of n-pentane[J]. Journal of Analytical and Applied Pyrolysis, 2022, 165: 105550. |
38 | Sun H L, Zhang B R, Wei C H, et al. Intensifying ethylene and propylene of pentene cracking of FCC gasoline by modulating the Brønsted acid site concentrations[J]. Industrial & Engineering Chemistry Research, 2021, 60(48): 17469-17479. |
39 | Corma A, Orchilles A V. Current views on the mechanism of catalytic cracking[J]. Microporous and Mesoporous Materials, 2000, 35/36: 21-30. |
40 | Vasant R C, Subhabrata B, Devadas P. Product distribution in the aromatization of dilute ethene over H-GaAlMFI zeolite: effect of space velocity[J]. Microporous and Mesoporous Materials, 2002, 51(3): 203-210. |
[1] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[2] | 肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471. |
[3] | 王景效, 贺翔宇, 龚剑洪, 许建良, 刘海峰. 新型催化裂解快速流化床内颗粒浓度分布实验研究[J]. 化工学报, 2021, 72(8): 4104-4110. |
[4] | 忻睦迪, 邢恩会. 三甲基膦和金属氧化物复合改性ZSM-5分子筛及其裂解性能研究[J]. 化工学报, 2021, 72(5): 2657-2668. |
[5] | 张玉明, 纪德馨, 朱翰文, 万利锋, 张炜, 温宏炎, 岳君容. 微型流化床中萘裂解生成小分子气体的反应动力学研究[J]. 化工学报, 2021, 72(5): 2604-2615. |
[6] | 刘美佳,王刚,张忠东,许顺年,王皓,党法璐,何盛宝. 碳五烷烃裂解制低碳烯烃反应性能的分析[J]. 化工学报, 2021, 72(10): 5172-5182. |
[7] | 韩海波, 王有和, 李康, 刘丹禾, 郝代军, 阎子峰. 超声波碱处理改性对丝光沸石结构、酸性质及其催化性能的影响[J]. 化工学报, 2018, 69(7): 3001-3008. |
[8] | 张建利, 王旭, 马丽萍, 于旭飞, 马清祥, 范素兵, 赵天生. MgFeMn-HTLcs的制备、改性及其CO加氢性能[J]. 化工学报, 2018, 69(5): 2073-2080. |
[9] | 石变芳, 查斌斌, 张俊, 张征湃, 徐晶, 韩一帆. 聚苯胺衍生碳材料负载的Fe基合成气直接制低碳烯烃催化剂:载体碳化温度的影响[J]. 化工学报, 2018, 69(2): 699-708. |
[10] | 张玉龙, 邵光印, 张征湃, 刘向林, 张超, 徐晶, 韩一帆. 活化气氛对CO2加氢制取低碳烯烃Fe-K催化剂构-效关系[J]. 化工学报, 2018, 69(2): 690-698. |
[11] | 唐松山, 泮泽优, 张长森, 王登台, 薛翔飞, 曹云峰, 刘永刚, 张瑞芹. 碱改性HZSM-5催化热解木质素催化剂失活分析[J]. 化工学报, 2017, 68(12): 4739-4749. |
[12] | 潘兴朋, 吴相英, 杜君, 钱明超, 余江. 碱处理Beta分子筛吸附脱硫动力学[J]. 化工学报, 2016, 67(9): 3747-3754. |
[13] | 王平, 赵辉, 杨朝合. 面向过程控制的两段提升管重油催化裂解动态建模[J]. 化工学报, 2016, 67(8): 3499-3506. |
[14] | 王平, 赵辉, 杨朝合. 基于多目标优化的两段提升管重油催化裂解自优化控制[J]. 化工学报, 2016, 67(8): 3491-3498. |
[15] | 孙丽媛, 张亚飞, 巩雁军. ZSM-5/EU-1共生分子筛的可控合成及催化裂解性能[J]. 化工学报, 2016, 67(8): 3436-3445. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||