化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5172-5182.DOI: 10.11949/0438-1157.20210488
刘美佳1(),王刚1(),张忠东2(),许顺年1,王皓3,党法璐1,何盛宝2
收稿日期:
2021-04-08
修回日期:
2021-06-02
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
王刚,张忠东
作者简介:
刘美佳(1994—),女,博士研究生,基金资助:
Meijia LIU1(),Gang WANG1(),Zhongdong ZHANG2(),Shunnian XU1,Hao WANG3,Falu DANG1,Shengbao HE2
Received:
2021-04-08
Revised:
2021-06-02
Online:
2021-10-05
Published:
2021-10-05
Contact:
Gang WANG,Zhongdong ZHANG
摘要:
考察了碳五烷烃的热裂解和催化裂解反应性能,发现正戊烷和异戊烷的裂解反应产物存在差异;进一步分析了正戊烷和异戊烷的裂解反应机理,以及裂解生成低碳烯烃和甲烷的区别。结果表明,在热裂解条件下,正戊烷的(乙烯+丙烯)选择性高于异戊烷,异戊烷的丁烯和甲烷选择性高于正戊烷;650℃时,正戊烷和异戊烷的热裂解产品中(乙烯+丙烯)、丁烯、甲烷的选择性分别为37.48%、7.23%、6.75%和19.57%、25.16%、9.36%。而在催化裂解条件下,异戊烷的(乙烯+丙烯)、丁烯、甲烷选择性均高于正戊烷;650℃时,正戊烷和异戊烷的催化裂解产品中(乙烯+丙烯)、丁烯、甲烷的选择性分别为37.16%、9.11%、7.80%和47.70%、14.45%、13.79%。此外,发现在高温裂解条件下异构烷烃比正构烷烃容易裂解生成丁烯和甲烷。
中图分类号:
刘美佳,王刚,张忠东,许顺年,王皓,党法璐,何盛宝. 碳五烷烃裂解制低碳烯烃反应性能的分析[J]. 化工学报, 2021, 72(10): 5172-5182.
Meijia LIU,Gang WANG,Zhongdong ZHANG,Shunnian XU,Hao WANG,Falu DANG,Shengbao HE. Analysis of reaction performance of high efficient pyrolysis of C5 alkanes to light olefins[J]. CIESC Journal, 2021, 72(10): 5172-5182.
拓扑结构 | 硅铝比 | 比表面积/(m2/g) | 微孔体积/(cm3/g) | 孔径 /nm | 弱酸量/(mmol/g) | 强酸量/(mmol/g) | 总酸量/(mmol/g) |
---|---|---|---|---|---|---|---|
MFI | 120 | 397.520 | 0.141 | 0.520 | 0.116 | 0.102 | 0.218 |
表1 催化裂解反应使用的分子筛性质
Table 1 Properties of zeolites used in catalytic pyrolysis
拓扑结构 | 硅铝比 | 比表面积/(m2/g) | 微孔体积/(cm3/g) | 孔径 /nm | 弱酸量/(mmol/g) | 强酸量/(mmol/g) | 总酸量/(mmol/g) |
---|---|---|---|---|---|---|---|
MFI | 120 | 397.520 | 0.141 | 0.520 | 0.116 | 0.102 | 0.218 |
碳数 | 原料 | 转化率/% | 甲烷选择性/% | 乙烯选择性/% | 丙烯选择性/% | 丁烯选择性/% | 文献 | |
---|---|---|---|---|---|---|---|---|
热裂解 | C5 | 正戊烷 | 77.90 | 11.94 | 43.13 | 23.88 | 10.14 | [ |
2-甲基丁烷 | 78.20 | 15.47 | 20.72 | 25.06 | 25.83 | |||
C7 | 正庚烷 | 87.80 | 8.09 | 54.44 | 19.70 | 11.16 | [ | |
2-甲基己烷 | 91.50 | 12.02 | 30.27 | 25.25 | 18.36 | |||
3-甲基己烷 | 94.30 | 12.94 | 31.81 | 22.27 | 15.38 | |||
C8 | 正辛烷 | 92.70 | 9.17 | 46.60 | 18.34 | 11.33 | [ | |
3-甲基庚烷 | 94.70 | 10.67 | 38.54 | 20.17 | 15.42 | |||
2,3-二甲基己烷 | 98.60 | 16.02 | 17.65 | 26.88 | 16.53 | |||
催化裂解 | C8 | 正辛烷 | 8.66 | 9.29 | — | — | 52.47 | [ |
3-甲基庚烷 | 7.23 | 23.25 | — | — | 61.36 | |||
2,5-二甲基庚烷 | 6.04 | 33.93 | — | — | 72.34 | |||
C8 | 正辛烷 | 96.66 | — | — | — | 9.22 | [ | |
异辛烷 | 61.15 | — | — | — | 15.14 |
表2 正构烷烃和异构烷烃裂解反应结果对比
Table 2 Comparison of cracking reaction results of n-alkanes and isoalkanes
碳数 | 原料 | 转化率/% | 甲烷选择性/% | 乙烯选择性/% | 丙烯选择性/% | 丁烯选择性/% | 文献 | |
---|---|---|---|---|---|---|---|---|
热裂解 | C5 | 正戊烷 | 77.90 | 11.94 | 43.13 | 23.88 | 10.14 | [ |
2-甲基丁烷 | 78.20 | 15.47 | 20.72 | 25.06 | 25.83 | |||
C7 | 正庚烷 | 87.80 | 8.09 | 54.44 | 19.70 | 11.16 | [ | |
2-甲基己烷 | 91.50 | 12.02 | 30.27 | 25.25 | 18.36 | |||
3-甲基己烷 | 94.30 | 12.94 | 31.81 | 22.27 | 15.38 | |||
C8 | 正辛烷 | 92.70 | 9.17 | 46.60 | 18.34 | 11.33 | [ | |
3-甲基庚烷 | 94.70 | 10.67 | 38.54 | 20.17 | 15.42 | |||
2,3-二甲基己烷 | 98.60 | 16.02 | 17.65 | 26.88 | 16.53 | |||
催化裂解 | C8 | 正辛烷 | 8.66 | 9.29 | — | — | 52.47 | [ |
3-甲基庚烷 | 7.23 | 23.25 | — | — | 61.36 | |||
2,5-二甲基庚烷 | 6.04 | 33.93 | — | — | 72.34 | |||
C8 | 正辛烷 | 96.66 | — | — | — | 9.22 | [ | |
异辛烷 | 61.15 | — | — | — | 15.14 |
1 | 孙丽丽. 新型炼油厂的技术集成与构建[J]. 石油学报(石油加工), 2020, 36(1): 1-10. |
Sun L L. Technology integration and construction of new refineries[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 1-10. | |
2 | Corma A, Corresa E, Mathieu Y, et al. Crude oil to chemicals: light olefins from crude oil[J]. Catalysis Science & Technology, 2017, 7(1): 12-46. |
3 | 汪燮卿, 舒兴田. 重质油裂解制轻烯烃[M]. 北京: 中国石化出版社, 2015. |
Wang X Q, Shu X T. Heavy Oil Catalytic Cracking to Olefins[M]. Beijing: China Petrochemical Press, 2015. | |
4 | Wang G, Xu C M, Gao J S. Study of cracking FCC naphtha in a secondary riser of the FCC unit for maximum propylene production[J]. Fuel Processing Technology, 2008, 89(9): 864-873. |
5 | Li C Y, Yang C H, Shan H H. Maximizing propylene yield by two-stage riser catalytic cracking of heavy oil[J]. Industrial & Engineering Chemistry Research, 2007, 46(14): 4914-4920. |
6 | Hou X, Qiu Y, Zhang X W, et al. Analysis of reaction pathways for n-pentane cracking over zeolites to produce light olefins[J]. Chemical Engineering Journal, 2017, 307: 372-381. |
7 | Thivasasith A, Maihom T, Pengpanich S, et al. Nanocavity effects of various zeolite frameworks on n-pentane cracking to light olefins: combination studies of DFT calculations and experiments[J]. Physical Chemistry Chemical Physics, 2019, 21(40): 22215-22223. |
8 | Zámostný P, Bělohlav Z, Starkbaumová L, et al. Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 207-216. |
9 | 张睿, 刘贵丽, 王亚东, 等. 轻烃催化裂解制低碳烯烃反应规律与原料特征化[J]. 化工学报, 2016, 67(8): 3387-3393. |
Zhang R, Liu G L, Wang Y D, et al. Reaction behaviors and feed characterization of light hydrocarbon catalytic pyrolysis for production of light olefins[J]. CIESC Journal, 2016, 67(8): 3387-3393. | |
10 | Kissin Y V. Chemical mechanisms of catalytic cracking over solid acidic catalysts: alkanes and alkenes[J]. Catalysis Reviews, 2001, 43(1/2): 85-146. |
11 | 李福超, 袁起民, 魏晓丽. 烃分子结构对其催化裂解反应性能的影响[J]. 石油学报(石油加工), 2020, 36(4): 661-666. |
Li F C, Yuan Q M, Wei X L. Effects of molecular structure on hydrocarbon catalytic cracking performance[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(4): 661-666. | |
12 | 魏晓丽, 张久顺, 毛安国, 等. 石脑油催化裂解生成甲烷的影响因素探析[J]. 石油炼制与化工, 2014, 45(3): 1-5. |
Wei X L, Zhang J S, Mao A G, et al. Investigation on influence factors of methane formation in naphtha catalytic cracking[J]. Petroleum Processing and Petrochemicals, 2014, 45(3): 1-5. | |
13 | 李福超, 张久顺, 袁起民. 正辛烷热裂化和催化裂化生成甲烷反应机理[J]. 燃料化学学报, 2014, 42(6): 697-703. |
Li F C, Zhang J S, Yuan Q M. Mechanism of methane formation in thermal and catalytic cracking of n-octane[J]. Journal of Fuel Chemistry and Technology, 2014, 42(6): 697-703. | |
14 | 李福超, 袁起民, 王亚敏, 等. 3-甲基庚烷热裂化和催化裂化甲烷生成机理[J]. 石油学报(石油加工), 2015, 31(4): 853-860. |
Li F C, Yuan Q M, Wang Y M, et al. Mechanism of methane formation in thermal and catalytic cracking of 3-methylheptane[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(4): 853-860. | |
15 | 李福超, 袁起民, 张久顺. 2,5-二甲基己烷热裂化和催化裂化生成甲烷的机理研究[J]. 石油炼制与化工, 2014, 45(12): 1-5. |
Li F C, Yuan Q M, Zhang J S. Study on methane formation in thermal and catalytic cracking of 2,5-dimethylhexane[J]. Petroleum Processing and Petrochemicals, 2014, 45(12): 1-5. | |
16 | Tian Y J, Zhang B F, Liang H R, et al. Synthesis and performance of pillared HZSM-5 nanosheet zeolites for n-decane catalytic cracking to produce light olefins[J]. Applied Catalysis A: General, 2019, 572: 24-33. |
17 | Sundberg J, Standl S, von Aretin T, et al. Optimal process for catalytic cracking of higher olefins on ZSM-5[J]. Chemical Engineering Journal, 2018, 348: 84-94. |
18 | Bortnovsky O, Sazama P, Wichterlova B. Cracking of pentenes to C2—C4 light olefins over zeolites and zeotypes: role of topology and acid site strength and concentration[J]. Applied Catalysis A: General, 2005, 287(2): 203-213. |
19 | Altynkovich E O, Potapenko O V, Sorokina T P, et al. Butane-butylene fraction cracking over modified ZSM-5 zeolite[J]. Petroleum Chemistry, 2017, 57(3): 215-221. |
20 | 马通, 耿祖豹, 李冰, 等. 不同模板制备ZSM-5分子筛的酸性特征及催化裂解性能差异[J]. 化工学报, 2016, 67(8): 3374-3379. |
Ma T, Geng Z B, Li B, et al. Difference of acid characters and catalytic cracking performance between ZSM-5 zeolites synthesized with various templates[J]. CIESC Journal, 2016, 67(8): 3374-3379. | |
21 | Potapenko O V, Doronin V P, Sorokina T P, et al. A study of intermolecular hydrogen transfer from naphthenes to 1-hexene over zeolite catalysts[J]. Applied Catalysis A: General, 2016, 516: 153-159. |
22 | 刘美佳, 王刚, 张忠东, 等. C5烃催化裂解过程中氢转移反应的研究[J]. 燃料化学学报, 2021, 49(1): 104-112. |
Liu M J, Wang G, Zhang Z D, et al. Study on hydrogen transfer reaction in C5 hydrocarbons catalytic pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 104-112. | |
23 | Corma A, González-Alfaro V, Orchillés A V. The role of pore topology on the behaviour of FCC zeolite additives [J]. Applied Catalysis: A General, 1999, 187(2): 245-254. |
24 | Hou X, Ni N, Wang Y, et al. Roles of the free radical and carbenium ion mechanisms in pentane cracking to produce light olefins[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 270-280. |
25 | Zhang R, Wang Z X, Liu H Y, et al. Thermodynamic equilibrium distribution of light olefins in catalytic pyrolysis[J]. Applied Catalysis A: General, 2016, 522: 165-171. |
26 | Fu J, Feng X, Liu Y B, et al. Effect of pore confinement on the adsorption of mono-branched alkanes of naphtha in ZSM-5 and Y zeolites[J]. Applied Surface Science, 2017, 423: 131-138. |
27 | Haag W O, Dessau R M, Lago R M. Kinetics and mechanism of paraffin cracking with zeolite catalysts[J]. Studies in Surface Science and Catalysis, 1991, 60: 255-265. |
28 | Krannila H, Haag W O, Gates B C. Monomolecular and bimolecular mechanisms of paraffin cracking: n-butane cracking catalyzed by HZSM-5[J]. Journal of Catalysis, 1992, 135(1): 115-124. |
29 | Kubo K, Iida H, Namba S, et al. Selective formation of light olefin by n-heptane cracking over HZSM-5 at high temperatures[J]. Microporous and Mesoporous Materials, 2012, 149(1): 126-133. |
30 | 罗渝然. 化学键能数据手册[M]. 北京: 科学出版社, 2005. |
Luo Y R. Handbook of Bond Dissociation Energies[M]. Beijing: Science Press, 2005. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[3] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[4] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[5] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[6] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[7] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[8] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[9] | 胡晗, 杨亮, 李春晓, 刘道平. 天然烟浸滤液水合物法储甲烷动力学研究[J]. 化工学报, 2023, 74(3): 1313-1321. |
[10] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[11] | 彭晓婉, 郭笑楠, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8浆液法分离CH4/N2的双吸收-吸附塔工艺流程建模与模拟[J]. 化工学报, 2023, 74(2): 784-795. |
[12] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[13] | 白宇恩, 张彬瑞, 刘东阳, 赵亮, 高金森, 徐春明. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448. |
[14] | 孙嘉辰, 裴春雷, 陈赛, 赵志坚, 何盛宝, 巩金龙. 化学链低碳烷烃氧化脱氢技术进展[J]. 化工学报, 2023, 74(1): 205-223. |
[15] | 廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||