[1] |
于飞, 李正甲, 安芸蕾, 等. 合成气催化转化直接制备低碳烯烃研究进展[J]. 燃料化学学报, 2016, 44(7):801-814. YU F, LI Z J, AN Y L, et al. Research progress in the direct conversion of syngas to lower olefins[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7):801-814.
|
[2] |
TORRES GALVIS H M, BITTER J H, KHARE C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070):835-838.
|
[3] |
ZHONG L S, YU F, AN Y L, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623):84-87.
|
[4] |
CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15):4725-4728.
|
[5] |
JIAO F, LI J J, PAN X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277):1065-1068.
|
[6] |
PENG X, CHENG K, KANG J, et al. Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis:diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles[J]. Angewandte Chemie International Edition, 2015, 54(15):4553-4556.
|
[7] |
CHENG K, KANG J, KING D L, et al. Advances in catalysis for syngas conversion to hydrocarbons[J]. Advances in Catalysis, 2017, 60:125-208.
|
[8] |
GAO X H, ZHANG J L, CHEN N, et al. Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process[J]. Chinese Journal of Catalysis, 2016, 37(4):510-516.
|
[9] |
戴薇薇, 刘达, 付东龙, 等. MnOx助剂对Fe/SiO2催化剂费-托合成制低碳烯烃动力学的影响[J]. 化工学报, 2015, 66(9):3444-3455. DAI W W, LIU D, FU D L, et al. Kinetics study of Fischer-Tropsch reaction to lower olefins over MnOx-promoted Fe/SiO2 catalysts[J]. CIESC Journal, 2015, 66(9):3444-3455.
|
[10] |
LI T Z, WANG H L, YANG Y, et al. Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis[J]. Journal of Energy Chemistry, 2013, 22:624-632.
|
[11] |
WANG G, ZHANG K, LIU P, et al. Synthesis of light olefins from syngas over Fe-Mn-V-K catalysts in the slurry phase[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(3):961-965.
|
[12] |
LI J, MA H, ZHANG H, et al. Direct production of light olefins from syngas over potassium modified Fe-Mn catalyst[J]. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112(2):409-423.
|
[13] |
马丽萍, 张建利, 马清祥, 等. K/MgFeZn-HTLcs催化CO加氢制低碳烯烃性能研究[J]. 燃料化学学报, 2016, 44(4):449-456. MA L P, ZHANG J L, MA Q X, et al. Direct synthesis of light olefins from CO hydrogenation over K/MgFeZn-HTLcs catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4):449-456.
|
[14] |
ZHANG J L, WANG X, MA L P, et al. Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12):1489-1498.
|
[15] |
ZHANG J L, MA L H, FAN S B, et al. Synthesis of light olefins from CO hydrogenation over Fe-Mn catalysts:effect of carburization pretreatment[J]. Fuel, 2013, 109:116-123.
|
[16] |
ZHU Y F, PAN X L, JIAO F, et al. Role of manganese oxide in syngas conversion to light olefins[J]. ACS Catalysis, 2017, (7):2800-2804.
|
[17] |
高鹏, 李枫, 赵宁, 等. 以类水滑石为前驱体的Cu/Zn/Al/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J]. 物理化学学报, 2014, 30(6):1155-1162. GAO P, LI F, ZHAO N, et al. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to Methanol[J]. Acta Physico-Chimica Sinica, 2014, 30(6):1155-1162.
|
[18] |
Valente J S, Prince J, Maubert A M, et al. Physicochemical study of nanocapsular layered double hydroxides evolution[J]. The Journal of Physical Chemistry C, 2009, 113(14):5547-5555.
|
[19] |
ZHAO M Q, ZHANG Q, ZHANG W, et al. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides[J]. Journal of the American Chemical Society, 2010, 132(42):14739-14741.
|
[20] |
JOZWIAK W K, KACZMAREK E, MANIECKI T P, et al. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres[J]. Applied Catalysis A:General, 2007, 326(1):17-27.
|
[21] |
LI S, LI A, KRISHNAMOORTHY S, et al. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catalysis Letters, 2001, 77(4):197-205.
|
[22] |
SUO H, WANG S, ZHANG C, et al. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. Journal of Catalysis, 2012, 286(2):111-123.
|
[23] |
GAO X, SHEN J, HSIA Y, et al. Reduction of supported iron oxide studied by temperature-programmed reduction combined with Mössbauer spectroscopy and X-ray diffraction[J]. Journal of the Chemical Society, Faraday Transactions, 1993, 89(7):1079-1084.
|
[24] |
CHEN K, FAN Y, HU Z, et al. Carbon monoxide hydrogenation on Fe2O3/ZrO2 catalysts[J]. Catalysis Letters, 1996, 36(3/4):139-144.
|
[25] |
BALTRUS J P, DIEHL J R, MCDONALD M A, et al. Effects of pretreatment on the surface properties of iron Fischer-Tropsch catalysts[J]. Applied Catalysis, 1989, 48(1):199-213.
|
[26] |
HUO C F, WU B S, GAO P, et al. The mechanism of potassium promoter:enhancing the stability of active surfaces[J]. Angewandte Chemie International Edition, 2011, 50(32):7403-7406.
|
[27] |
SMIT E D, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis:on the multifaceted catalyst deactivation behavior[J]. Chemical Society Reviews, 2008, 37(12):2758-2781.
|
[28] |
张俊, 张征湃, 苏俊杰, 等. 载体碱性对Fe基催化剂费-托合成反应的影响[J]. 化工学报, 2016, 67(2):549-556. ZHANG J, ZHANG Z P, SU J J, et al. Effect of support basicity on iron-based catalysts for Fischer-Tropsch synthesis[J]. CIESC Journal, 2016, 67(2):549-556.
|
[29] |
LI J F, CHENG X F, ZHANG C H, et al. Effects of alkali on iron-based catalysts for Fischer-Tropsch synthesis:CO chemisorptions study[J]. Journal of Molecular Catalysis A:Chemical, 2015, 396:174-180.
|
[30] |
徐龙伢, 王清遐, 杨力, 等. 碱土金属氧化物担载Fe-MnO催化剂的CO加氢反应制低碳烯烃性能[J]. 燃料化学学报, 1995, 23:125-130. XU L Y, WANG Q X, YANG L, et al. Performance of ⅡA metal oxide supported Fe-MnO catalyst for production of light alkanes via syngas[J]. Journal of Fuel Chemistry and Technology, 1995, 23:125-130.
|
[31] |
CHENG Y, LIN J, WU T J, et al. Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J]. Applied Catalysis B:Environmental, 2017, 204:475-485.
|