化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4780-4792.DOI: 10.11949/0438-1157.20240617
肖忠良1(), 夏宇博1, 宋刘斌1(
), 向优涛1, 赵亭亭1, 罗静1, 刘远佳1, 邓鹏辉1, 颜群轩2(
)
收稿日期:
2024-06-04
修回日期:
2024-08-16
出版日期:
2024-12-25
发布日期:
2025-01-03
通讯作者:
宋刘斌,颜群轩
作者简介:
肖忠良(1964—),男,博士,教授,xiaozhongliang@163.com
基金资助:
Zhongliang XIAO1(), Yubo XIA1, Liubin SONG1(
), Youtao XIANG1, Tingting ZHAO1, Jing LUO1, Yuanjia LIU1, Penghui DENG1, Qunxuan YAN2(
)
Received:
2024-06-04
Revised:
2024-08-16
Online:
2024-12-25
Published:
2025-01-03
Contact:
Liubin SONG, Qunxuan YAN
摘要:
从废旧磷酸铁锂(LiFePO4)动力电池中回收有价金属,实现其资源化利用是当前亟待解决的问题。提出磷酸-酒石酸混合浸出体系,对废旧LiFePO4的全组分浸出回收工艺进行研究。通过单因素实验结果得到浸出条件的大致范围,再采用响应曲面法对不同浸出条件进行优化得到最佳浸出工艺。结果表明:在磷酸浓度为3.1 mol/L、酒石酸(TA)浓度为1.3 mol/L、液固比6.8∶1、搅拌速度500 r/min、反应温度65℃下反应5 h,Li和Fe的浸出率分别为97.55%和98.67%。实验结果表明,酒石酸可以与磷酸浸出释放的Fe3+进行络合,混合酸的协同作用几乎将废料中所有的Li、Fe都浸出到溶液中。通过调整浸出液中Li∶Fe∶P的摩尔比,采用喷雾干燥-烧结法合成再生磷酸铁锂(RE-LiFePO4)。该工艺在整个回收过程中几乎没有废酸、废气排放,实现了废旧LiFePO4的全组分绿色回收。
中图分类号:
肖忠良, 夏宇博, 宋刘斌, 向优涛, 赵亭亭, 罗静, 刘远佳, 邓鹏辉, 颜群轩. 磷酸-酒石酸体系协同浸出废旧磷酸铁锂工艺[J]. 化工学报, 2024, 75(12): 4780-4792.
Zhongliang XIAO, Yubo XIA, Liubin SONG, Youtao XIANG, Tingting ZHAO, Jing LUO, Yuanjia LIU, Penghui DENG, Qunxuan YAN. Synergistic leaching process of waste LiFePO4 with phosphoric acid-tartaric acid system[J]. CIESC Journal, 2024, 75(12): 4780-4792.
药品名称 | 分子式 | 规格 | 厂家 |
---|---|---|---|
磷酸 | H3PO4 | AR | 国药集团有限公司 |
酒石酸 | C4H6O6 | AR | 国药集团有限公司 |
碳酸锂 | Li2CO3 | 电池级 | 上海麦克林生化科技股份有限公司 |
氧化铁 | Fe2O3 | AR | 上海麦克林生化科技股份有限公司 |
表1 实验试剂
Table 1 Experimental reagents
药品名称 | 分子式 | 规格 | 厂家 |
---|---|---|---|
磷酸 | H3PO4 | AR | 国药集团有限公司 |
酒石酸 | C4H6O6 | AR | 国药集团有限公司 |
碳酸锂 | Li2CO3 | 电池级 | 上海麦克林生化科技股份有限公司 |
氧化铁 | Fe2O3 | AR | 上海麦克林生化科技股份有限公司 |
仪器名称 | 型号 | 生产厂家 |
---|---|---|
恒速电动搅拌器 | JJ-1B | 西城新瑞仪器厂 |
集热式恒温加热磁力 搅拌器 | DF-101S | 上海力辰邦西仪器科技公司 |
管式炉 | HLG-X-16 | 洛阳恒立窑炉有限公司 |
X射线衍射分析仪 | D8 Advance | 德国Bruker公司 |
电感耦合等离子体发生光谱仪 | ARCOS | 德国SPECTRO公司 |
表2 实验器材
Table 2 Experimental equipments
仪器名称 | 型号 | 生产厂家 |
---|---|---|
恒速电动搅拌器 | JJ-1B | 西城新瑞仪器厂 |
集热式恒温加热磁力 搅拌器 | DF-101S | 上海力辰邦西仪器科技公司 |
管式炉 | HLG-X-16 | 洛阳恒立窑炉有限公司 |
X射线衍射分析仪 | D8 Advance | 德国Bruker公司 |
电感耦合等离子体发生光谱仪 | ARCOS | 德国SPECTRO公司 |
Element | Composition/% |
---|---|
Li | 3.62 |
Fe | 28.06 |
Al | 0.72 |
P | 16.28 |
表3 铁锂粉化学元素组成
Table 3 Chemical element composition of iron-lithium powder
Element | Composition/% |
---|---|
Li | 3.62 |
Fe | 28.06 |
Al | 0.72 |
P | 16.28 |
实验 序号 | 搅拌速度/(r/min) | 磷酸浓度/(mol/L) | 酒石酸浓度/(mol/L) | 液固比/(ml/g) | 温度/℃ | 时间/h | Li 浸出率/% | Fe 浸出率/% |
---|---|---|---|---|---|---|---|---|
1 | 200 | 2.90 | 1.33 | 5∶1 | 70 | 5 | 89.60 | 88.78 |
2 | 300 | 2.90 | 1.33 | 5∶1 | 70 | 5 | 92.58 | 95.33 |
3 | 400 | 2.90 | 1.33 | 5∶1 | 70 | 5 | 92.59 | 96.34 |
4 | 500 | 2.90 | 1.33 | 5∶1 | 70 | 5 | 94.83 | 96.67 |
5 | 600 | 2.90 | 1.33 | 5∶1 | 70 | 5 | 93.14 | 97.34 |
6 | 700 | 2.90 | 1.33 | 5∶1 | 70 | 5 | 91.27 | 93.00 |
表4 搅拌速度对锂、铁浸出率的影响
Table 4 Effect of stirring speed on leaching rate of Li and Fe
实验 序号 | 搅拌速度/(r/min) | 磷酸浓度/(mol/L) | 酒石酸浓度/(mol/L) | 液固比/(ml/g) | 温度/℃ | 时间/h | Li 浸出率/% | Fe 浸出率/% |
---|---|---|---|---|---|---|---|---|
1 | 200 | 2.90 | 1.33 | 5∶1 | 70 | 5 | 89.60 | 88.78 |
2 | 300 | 2.90 | 1.33 | 5∶1 | 70 | 5 | 92.58 | 95.33 |
3 | 400 | 2.90 | 1.33 | 5∶1 | 70 | 5 | 92.59 | 96.34 |
4 | 500 | 2.90 | 1.33 | 5∶1 | 70 | 5 | 94.83 | 96.67 |
5 | 600 | 2.90 | 1.33 | 5∶1 | 70 | 5 | 93.14 | 97.34 |
6 | 700 | 2.90 | 1.33 | 5∶1 | 70 | 5 | 91.27 | 93.00 |
实验 序号 | 磷酸 浓度/(mol/L) | 搅拌 速度/(r/min) | 酒石酸 浓度/(mol/L) | 液固比/(ml/g) | 温度/℃ | 时间/h | Li 浸出率/% | Fe 浸出率/% |
---|---|---|---|---|---|---|---|---|
1 | 1.74 | 500 | 1.33 | 5∶1 | 70 | 5 | 88.93 | 85.38 |
2 | 2.32 | 500 | 1.33 | 5∶1 | 70 | 5 | 94.55 | 94.32 |
3 | 2.90 | 500 | 1.33 | 5∶1 | 70 | 5 | 96.34 | 96.48 |
4 | 3.48 | 500 | 1.33 | 5∶1 | 70 | 5 | 95.97 | 94.44 |
5 | 4.06 | 500 | 1.33 | 5∶1 | 70 | 5 | 95.12 | 94.35 |
6 | 4.64 | 500 | 1.33 | 5∶1 | 70 | 5 | 95.61 | 74.15 |
表5 磷酸浓度对锂、铁浸出率的影响
Table 5 Effect of H3PO4 concentration on leaching rate of Li and Fe
实验 序号 | 磷酸 浓度/(mol/L) | 搅拌 速度/(r/min) | 酒石酸 浓度/(mol/L) | 液固比/(ml/g) | 温度/℃ | 时间/h | Li 浸出率/% | Fe 浸出率/% |
---|---|---|---|---|---|---|---|---|
1 | 1.74 | 500 | 1.33 | 5∶1 | 70 | 5 | 88.93 | 85.38 |
2 | 2.32 | 500 | 1.33 | 5∶1 | 70 | 5 | 94.55 | 94.32 |
3 | 2.90 | 500 | 1.33 | 5∶1 | 70 | 5 | 96.34 | 96.48 |
4 | 3.48 | 500 | 1.33 | 5∶1 | 70 | 5 | 95.97 | 94.44 |
5 | 4.06 | 500 | 1.33 | 5∶1 | 70 | 5 | 95.12 | 94.35 |
6 | 4.64 | 500 | 1.33 | 5∶1 | 70 | 5 | 95.61 | 74.15 |
实验 序号 | 酒石酸 浓度/(mol/L) | 搅拌 速度/(r/min) | 磷酸 浓度/(mol/L) | 液固比/(ml/g) | 温度/℃ | 时间/h | Li 浸出率/% | Fe 浸出率/% |
---|---|---|---|---|---|---|---|---|
1 | 0.53 | 500 | 2.90 | 5∶1 | 70 | 5 | 93.21 | 24.94 |
2 | 0.80 | 500 | 2.90 | 5∶1 | 70 | 5 | 93.45 | 52.04 |
3 | 1.06 | 500 | 2.90 | 5∶1 | 70 | 5 | 94.03 | 81.83 |
4 | 1.33 | 500 | 2.90 | 5∶1 | 70 | 5 | 95.11 | 97.08 |
5 | 1.60 | 500 | 2.90 | 5∶1 | 70 | 5 | 95.11 | 94.44 |
6 | 1.86 | 500 | 2.90 | 5∶1 | 70 | 5 | 94.53 | 93.79 |
表6 酒石酸浓度对锂、铁浸出率的影响
Table 6 Effect of tartaric acid concentration on leaching rate of Li and Fe
实验 序号 | 酒石酸 浓度/(mol/L) | 搅拌 速度/(r/min) | 磷酸 浓度/(mol/L) | 液固比/(ml/g) | 温度/℃ | 时间/h | Li 浸出率/% | Fe 浸出率/% |
---|---|---|---|---|---|---|---|---|
1 | 0.53 | 500 | 2.90 | 5∶1 | 70 | 5 | 93.21 | 24.94 |
2 | 0.80 | 500 | 2.90 | 5∶1 | 70 | 5 | 93.45 | 52.04 |
3 | 1.06 | 500 | 2.90 | 5∶1 | 70 | 5 | 94.03 | 81.83 |
4 | 1.33 | 500 | 2.90 | 5∶1 | 70 | 5 | 95.11 | 97.08 |
5 | 1.60 | 500 | 2.90 | 5∶1 | 70 | 5 | 95.11 | 94.44 |
6 | 1.86 | 500 | 2.90 | 5∶1 | 70 | 5 | 94.53 | 93.79 |
实验 序号 | 温度/℃ | 搅拌 速度/(r/min) | 磷酸 浓度/(mol/L) | 酒石酸 浓度/(mol/L) | 液固比/(ml/g) | 时间/h | Li 浸出率/% | Fe 浸出率/% |
---|---|---|---|---|---|---|---|---|
1 | 40 | 500 | 2.90 | 1.33 | 5∶1 | 5 | 88.91 | 84.26 |
2 | 50 | 500 | 2.90 | 1.33 | 5∶1 | 5 | 93.71 | 90.03 |
3 | 60 | 500 | 2.90 | 1.33 | 5∶1 | 5 | 94.45 | 97.99 |
4 | 70 | 500 | 2.90 | 1.33 | 5∶1 | 5 | 95.76 | 99.20 |
5 | 80 | 500 | 2.90 | 1.33 | 5∶1 | 5 | 95.15 | 94.49 |
6 | 90 | 500 | 2.90 | 1.33 | 5∶1 | 5 | 94.43 | 92.78 |
表7 反应温度对锂、铁浸出率的影响
Table 7 Effect of reaction temperature on leaching rate of Li and Fe
实验 序号 | 温度/℃ | 搅拌 速度/(r/min) | 磷酸 浓度/(mol/L) | 酒石酸 浓度/(mol/L) | 液固比/(ml/g) | 时间/h | Li 浸出率/% | Fe 浸出率/% |
---|---|---|---|---|---|---|---|---|
1 | 40 | 500 | 2.90 | 1.33 | 5∶1 | 5 | 88.91 | 84.26 |
2 | 50 | 500 | 2.90 | 1.33 | 5∶1 | 5 | 93.71 | 90.03 |
3 | 60 | 500 | 2.90 | 1.33 | 5∶1 | 5 | 94.45 | 97.99 |
4 | 70 | 500 | 2.90 | 1.33 | 5∶1 | 5 | 95.76 | 99.20 |
5 | 80 | 500 | 2.90 | 1.33 | 5∶1 | 5 | 95.15 | 94.49 |
6 | 90 | 500 | 2.90 | 1.33 | 5∶1 | 5 | 94.43 | 92.78 |
实验 序号 | 液固比/(ml/g) | 搅拌 速度/(r/min) | 磷酸 浓度/(mol/L) | 酒石酸 浓度/(mol/L) | 温度/℃ | 时间/h | Li 浸出率/% | Fe 浸出率/% |
---|---|---|---|---|---|---|---|---|
1 | 3∶1 | 500 | 2.90 | 1.33 | 70 | 5 | 83.92 | 77.84 |
2 | 4∶1 | 500 | 2.90 | 1.33 | 70 | 5 | 92.01 | 90.71 |
3 | 5∶1 | 500 | 2.90 | 1.33 | 70 | 5 | 94.00 | 97.39 |
4 | 6∶1 | 500 | 2.90 | 1.33 | 70 | 5 | 97.52 | 98.87 |
5 | 8∶1 | 500 | 2.90 | 1.33 | 70 | 5 | 96.53 | 97.71 |
6 | 10∶1 | 500 | 2.90 | 1.33 | 70 | 5 | 92.23 | 86.51 |
表8 液固比对锂、铁浸出率的影响
Table 8 Effect of liquid-solid ratio on leaching rate of Li and Fe
实验 序号 | 液固比/(ml/g) | 搅拌 速度/(r/min) | 磷酸 浓度/(mol/L) | 酒石酸 浓度/(mol/L) | 温度/℃ | 时间/h | Li 浸出率/% | Fe 浸出率/% |
---|---|---|---|---|---|---|---|---|
1 | 3∶1 | 500 | 2.90 | 1.33 | 70 | 5 | 83.92 | 77.84 |
2 | 4∶1 | 500 | 2.90 | 1.33 | 70 | 5 | 92.01 | 90.71 |
3 | 5∶1 | 500 | 2.90 | 1.33 | 70 | 5 | 94.00 | 97.39 |
4 | 6∶1 | 500 | 2.90 | 1.33 | 70 | 5 | 97.52 | 98.87 |
5 | 8∶1 | 500 | 2.90 | 1.33 | 70 | 5 | 96.53 | 97.71 |
6 | 10∶1 | 500 | 2.90 | 1.33 | 70 | 5 | 92.23 | 86.51 |
实验 序号 | 时间/h | 搅拌 速度/(r/min) | 磷酸 浓度/(mol/L) | 酒石酸 浓度/(mol/L) | 温度/℃ | 液固比/(ml/g) | Li 浸出率/% | Fe 浸出率/% |
---|---|---|---|---|---|---|---|---|
1 | 2 | 500 | 2.90 | 1.33 | 70 | 6∶1 | 86.65 | 86.69 |
2 | 3 | 500 | 2.90 | 1.33 | 70 | 6∶1 | 91.03 | 91.39 |
3 | 4 | 500 | 2.90 | 1.33 | 70 | 6∶1 | 94.92 | 96.83 |
4 | 5 | 500 | 2.90 | 1.33 | 70 | 6∶1 | 97.88 | 98.47 |
5 | 6 | 500 | 2.90 | 1.33 | 70 | 6∶1 | 98.08 | 97.43 |
6 | 7 | 500 | 2.90 | 1.33 | 70 | 6∶1 | 97.69 | 97.29 |
表9 反应时间对锂、铁浸出率的影响
Table 9 Effect of reaction time on leaching rate of Li and Fe
实验 序号 | 时间/h | 搅拌 速度/(r/min) | 磷酸 浓度/(mol/L) | 酒石酸 浓度/(mol/L) | 温度/℃ | 液固比/(ml/g) | Li 浸出率/% | Fe 浸出率/% |
---|---|---|---|---|---|---|---|---|
1 | 2 | 500 | 2.90 | 1.33 | 70 | 6∶1 | 86.65 | 86.69 |
2 | 3 | 500 | 2.90 | 1.33 | 70 | 6∶1 | 91.03 | 91.39 |
3 | 4 | 500 | 2.90 | 1.33 | 70 | 6∶1 | 94.92 | 96.83 |
4 | 5 | 500 | 2.90 | 1.33 | 70 | 6∶1 | 97.88 | 98.47 |
5 | 6 | 500 | 2.90 | 1.33 | 70 | 6∶1 | 98.08 | 97.43 |
6 | 7 | 500 | 2.90 | 1.33 | 70 | 6∶1 | 97.69 | 97.29 |
Factors | Code value | ||
---|---|---|---|
-1 | 0 | 1 | |
A: H3PO4/(mol/L) | 2 | 3 | 4 |
B: Tartaric acid/(mol/L) | 0.8 | 1.3 | 1.8 |
C: L/S/(ml/g) | 4∶1 | 7∶1 | 10∶1 |
D: Temperature/℃ | 40 | 65 | 90 |
表10 Box-Behnken 实验因素高低水平
Table 10 Box-Behnken experimental factor level
Factors | Code value | ||
---|---|---|---|
-1 | 0 | 1 | |
A: H3PO4/(mol/L) | 2 | 3 | 4 |
B: Tartaric acid/(mol/L) | 0.8 | 1.3 | 1.8 |
C: L/S/(ml/g) | 4∶1 | 7∶1 | 10∶1 |
D: Temperature/℃ | 40 | 65 | 90 |
Run | H3PO4 concentration/(mol/L) | Tartaric acid concentration /(mol/L) | Liquid/Solid ratios/(ml/g) | Leaching temperature /℃ | Leaching rate of Li/% | Leaching rate of Fe/% |
---|---|---|---|---|---|---|
1 | 0 | 1 | 0 | 1 | 83.38 | 85.78 |
2 | 0 | 0 | 0 | 0 | 97.08 | 98.03 |
3 | -1 | -1 | 0 | 0 | 75.33 | 63.17 |
4 | -1 | 0 | 1 | 0 | 63.06 | 62.65 |
5 | -1 | 0 | 0 | 1 | 72.45 | 70.76 |
6 | 0 | 0 | 0 | 0 | 97.41 | 97.48 |
7 | 1 | 0 | 0 | 1 | 80.24 | 80.87 |
8 | 1 | -1 | 0 | 0 | 76.08 | 71.25 |
9 | 0 | 1 | 0 | -1 | 84.37 | 75.74 |
10 | 1 | 0 | 1 | 0 | 64.95 | 70.24 |
11 | 0 | -1 | 0 | -1 | 80.78 | 65.75 |
12 | 0 | 0 | 0 | 0 | 97.63 | 98.21 |
13 | -1 | 0 | -1 | 0 | 68.94 | 74.24 |
14 | 0 | 1 | -1 | 0 | 77.45 | 85.15 |
15 | 0 | -1 | 0 | 1 | 84.98 | 69.54 |
16 | 0 | 0 | 1 | 1 | 75.45 | 68.25 |
17 | 1 | 0 | -1 | 0 | 75.3 | 81.53 |
18 | -1 | 1 | 0 | 0 | 72.45 | 77.47 |
19 | 0 | 0 | 1 | -1 | 67.26 | 69.36 |
20 | 1 | 1 | 0 | 0 | 78.9 | 83.18 |
21 | 0 | 0 | -1 | 1 | 78.93 | 87.32 |
22 | 0 | 1 | 1 | 0 | 72.78 | 71.3 |
23 | -1 | 0 | 0 | -1 | 72.75 | 67.56 |
24 | 0 | 0 | -1 | -1 | 82.38 | 73.69 |
25 | 1 | 0 | 0 | -1 | 72.88 | 71.24 |
26 | 0 | -1 | 1 | 0 | 70.28 | 64.27 |
27 | 0 | -1 | -1 | 0 | 81.05 | 72.53 |
表11 Li、Fe浸出率BBD实验设计
Table 11 BBD experimental design for Li and Fe leaching rate
Run | H3PO4 concentration/(mol/L) | Tartaric acid concentration /(mol/L) | Liquid/Solid ratios/(ml/g) | Leaching temperature /℃ | Leaching rate of Li/% | Leaching rate of Fe/% |
---|---|---|---|---|---|---|
1 | 0 | 1 | 0 | 1 | 83.38 | 85.78 |
2 | 0 | 0 | 0 | 0 | 97.08 | 98.03 |
3 | -1 | -1 | 0 | 0 | 75.33 | 63.17 |
4 | -1 | 0 | 1 | 0 | 63.06 | 62.65 |
5 | -1 | 0 | 0 | 1 | 72.45 | 70.76 |
6 | 0 | 0 | 0 | 0 | 97.41 | 97.48 |
7 | 1 | 0 | 0 | 1 | 80.24 | 80.87 |
8 | 1 | -1 | 0 | 0 | 76.08 | 71.25 |
9 | 0 | 1 | 0 | -1 | 84.37 | 75.74 |
10 | 1 | 0 | 1 | 0 | 64.95 | 70.24 |
11 | 0 | -1 | 0 | -1 | 80.78 | 65.75 |
12 | 0 | 0 | 0 | 0 | 97.63 | 98.21 |
13 | -1 | 0 | -1 | 0 | 68.94 | 74.24 |
14 | 0 | 1 | -1 | 0 | 77.45 | 85.15 |
15 | 0 | -1 | 0 | 1 | 84.98 | 69.54 |
16 | 0 | 0 | 1 | 1 | 75.45 | 68.25 |
17 | 1 | 0 | -1 | 0 | 75.3 | 81.53 |
18 | -1 | 1 | 0 | 0 | 72.45 | 77.47 |
19 | 0 | 0 | 1 | -1 | 67.26 | 69.36 |
20 | 1 | 1 | 0 | 0 | 78.9 | 83.18 |
21 | 0 | 0 | -1 | 1 | 78.93 | 87.32 |
22 | 0 | 1 | 1 | 0 | 72.78 | 71.3 |
23 | -1 | 0 | 0 | -1 | 72.75 | 67.56 |
24 | 0 | 0 | -1 | -1 | 82.38 | 73.69 |
25 | 1 | 0 | 0 | -1 | 72.88 | 71.24 |
26 | 0 | -1 | 1 | 0 | 70.28 | 64.27 |
27 | 0 | -1 | -1 | 0 | 81.05 | 72.53 |
Source | Sum of Squares | Degree of freedom(df) | Mean Square | F | P-value Prob>F | |
---|---|---|---|---|---|---|
Model | 2097.05 | 14 | 149.79 | 156.62 | <0.0001 | Significant |
A-H3PO4 | 45.51 | 1 | 45.51 | 118.05 | <0.0001 | |
B-Tartaric acid | 0.0574 | 1 | 0.0574 | 340.48 | 0.7773 | |
C-L/S ratios | 210.59 | 1 | 210.59 | 306.26 | <0.0001 | |
D-Temperature | 18.78 | 1 | 18.78 | 100.51 | 0.0002 | |
AB | 8.12 | 1 | 8.12 | 1.10 | 0.0049 | |
AC | 5.00 | 1 | 5.00 | 0.0177 | 0.0194 | |
AD | 14.67 | 1 | 14.67 | 8.12 | 0.0006 | |
BC | 9.30 | 1 | 9.30 | 6.14 | 0.0031 | |
BD | 6.73 | 1 | 6.73 | 7.67 | 0.0086 | |
CD | 33.87 | 1 | 33.87 | 42.68 | <0.0001 | |
A2 | 1206.07 | 1 | 1206.07 | 723.00 | <0.0001 | |
B2 | 259.24 | 1 | 259.50 | 579.92 | <0.0001 | |
C2 | 1117.53 | 1 | 1117.53 | 638.00 | <0.0001 | |
D2 | 278.24 | 1 | 278.24 | 570.96 | <0.0001 | |
Residual | 8.23 | 12 | 0.6860 | |||
Lack of Fit | 8.08 | 10 | 0.8079 | 10.54 | 0.0897 | Not significant |
Pure error | 0.1533 | 2 | 0.0766 | |||
Cor total | 2105.28 | 26 | ||||
Adeq precision | 55.9368 | |||||
R2 | 0.9961 | |||||
Adjusted R2 | 0.9915 | |||||
Predicted R2 | 0.9777 | |||||
C.V./% | 1.06 |
表12 Li浸出率BBD模型的方差分析
Table 12 Variance analysis of BBD model for Li leaching rate
Source | Sum of Squares | Degree of freedom(df) | Mean Square | F | P-value Prob>F | |
---|---|---|---|---|---|---|
Model | 2097.05 | 14 | 149.79 | 156.62 | <0.0001 | Significant |
A-H3PO4 | 45.51 | 1 | 45.51 | 118.05 | <0.0001 | |
B-Tartaric acid | 0.0574 | 1 | 0.0574 | 340.48 | 0.7773 | |
C-L/S ratios | 210.59 | 1 | 210.59 | 306.26 | <0.0001 | |
D-Temperature | 18.78 | 1 | 18.78 | 100.51 | 0.0002 | |
AB | 8.12 | 1 | 8.12 | 1.10 | 0.0049 | |
AC | 5.00 | 1 | 5.00 | 0.0177 | 0.0194 | |
AD | 14.67 | 1 | 14.67 | 8.12 | 0.0006 | |
BC | 9.30 | 1 | 9.30 | 6.14 | 0.0031 | |
BD | 6.73 | 1 | 6.73 | 7.67 | 0.0086 | |
CD | 33.87 | 1 | 33.87 | 42.68 | <0.0001 | |
A2 | 1206.07 | 1 | 1206.07 | 723.00 | <0.0001 | |
B2 | 259.24 | 1 | 259.50 | 579.92 | <0.0001 | |
C2 | 1117.53 | 1 | 1117.53 | 638.00 | <0.0001 | |
D2 | 278.24 | 1 | 278.24 | 570.96 | <0.0001 | |
Residual | 8.23 | 12 | 0.6860 | |||
Lack of Fit | 8.08 | 10 | 0.8079 | 10.54 | 0.0897 | Not significant |
Pure error | 0.1533 | 2 | 0.0766 | |||
Cor total | 2105.28 | 26 | ||||
Adeq precision | 55.9368 | |||||
R2 | 0.9961 | |||||
Adjusted R2 | 0.9915 | |||||
Predicted R2 | 0.9777 | |||||
C.V./% | 1.06 |
Source | Sum of Squares | Degee of freedom(df) | Mean Square | F | P-value Prob>F | |
---|---|---|---|---|---|---|
Model | 2790.57 | 14 | 199.33 | 156.62 | <0.0001 | Significant |
A-H3PO4 | 150.24 | 1 | 150.24 | 118.05 | <0.0001 | |
B-Tartaric acid | 433.32 | 1 | 433.32 | 340.48 | <0.0001 | |
C-L/S ratios | 389.77 | 1 | 389.77 | 306.26 | <0.0001 | |
D-Temperature | 127.92 | 1 | 127.92 | 100.51 | <0.0001 | |
AB | 1.40 | 1 | 1.40 | 1.10 | 0.3142 | |
AC | 0.0225 | 1 | 0.0225 | 0.0177 | 0.8964 | |
AD | 10.34 | 1 | 10.34 | 8.12 | 0.0146 | |
BC | 7.81 | 1 | 7.81 | 6.14 | 0.0291 | |
BD | 9.77 | 1 | 9.77 | 7.67 | 0.0170 | |
CD | 54.32 | 1 | 54.32 | 42.68 | <0.0001 | |
A2 | 920.15 | 1 | 920.15 | 723.00 | <0.0001 | |
B2 | 738.06 | 1 | 738.06 | 579.92 | <0.0001 | |
C2 | 811.97 | 1 | 811.97 | 638.00 | <0.0001 | |
D2 | 726.65 | 1 | 726.65 | 570.96 | <0.0001 | |
Residual | 15.27 | 12 | 1.27 | |||
Lack of Fit | 14.98 | 10 | 1.50 | 10.36 | 0.0912 | Not significant |
Pure error | 0.2893 | 2 | 0.1446 | |||
Cor total | 2805.84 | 26 | ||||
Adeq precision | 41.6701 | |||||
R2 | 0.9946 | |||||
Adjusted R2 | 0.9882 | |||||
Predicted R2 | 0.9690 | |||||
C.V./% | 1.48 |
表13 Fe浸出率BBD模型的方差分析
Table 13 Variance analysis of BBD model for Fe leaching rate
Source | Sum of Squares | Degee of freedom(df) | Mean Square | F | P-value Prob>F | |
---|---|---|---|---|---|---|
Model | 2790.57 | 14 | 199.33 | 156.62 | <0.0001 | Significant |
A-H3PO4 | 150.24 | 1 | 150.24 | 118.05 | <0.0001 | |
B-Tartaric acid | 433.32 | 1 | 433.32 | 340.48 | <0.0001 | |
C-L/S ratios | 389.77 | 1 | 389.77 | 306.26 | <0.0001 | |
D-Temperature | 127.92 | 1 | 127.92 | 100.51 | <0.0001 | |
AB | 1.40 | 1 | 1.40 | 1.10 | 0.3142 | |
AC | 0.0225 | 1 | 0.0225 | 0.0177 | 0.8964 | |
AD | 10.34 | 1 | 10.34 | 8.12 | 0.0146 | |
BC | 7.81 | 1 | 7.81 | 6.14 | 0.0291 | |
BD | 9.77 | 1 | 9.77 | 7.67 | 0.0170 | |
CD | 54.32 | 1 | 54.32 | 42.68 | <0.0001 | |
A2 | 920.15 | 1 | 920.15 | 723.00 | <0.0001 | |
B2 | 738.06 | 1 | 738.06 | 579.92 | <0.0001 | |
C2 | 811.97 | 1 | 811.97 | 638.00 | <0.0001 | |
D2 | 726.65 | 1 | 726.65 | 570.96 | <0.0001 | |
Residual | 15.27 | 12 | 1.27 | |||
Lack of Fit | 14.98 | 10 | 1.50 | 10.36 | 0.0912 | Not significant |
Pure error | 0.2893 | 2 | 0.1446 | |||
Cor total | 2805.84 | 26 | ||||
Adeq precision | 41.6701 | |||||
R2 | 0.9946 | |||||
Adjusted R2 | 0.9882 | |||||
Predicted R2 | 0.9690 | |||||
C.V./% | 1.48 |
图4 (a)Li响应面模型残差图;(b)Fe响应面模型残差图;(c)Li浸出率实验值与预测值分布图;(d)Fe浸出率实验值与预测值分布图
Fig.4 (a) Residual diagram of Li response surface model; (b) Residual diagram of Fe response surface model; (c) Distribution diagram of experimental value and predicted value of Li leaching rate; (d) Distribution diagram of experimental value and predicted value of Fe leaching
图5 (a)Li浸出率的三维响应曲面图;(b)Fe浸出率的三维响应曲面图;(c)Li浸出率的二维等高线图;(d)Fe浸出率的二维等高线图
Fig.5 (a) Three-dimensional response surface diagram of Li leaching rate; (b) Three-dimensional response surface diagram of Fe leaching rate; (c) Two-dimensional contour map of Li leaching rate; (d) Two-dimensional contour map of Fe leaching rate
1 | Liu Z H, Zhou T, Yang H R, et al. A review of the resourceful utilization status for decommissioned power batteries[J]. Energies, 2023, 16(23): 7869. |
2 | Xu J J, Cai X Y, Cai S M, et al. High-energy lithium-ion batteries: recent progress and a promising future in applications [J]. Energy & Environmental Materials, 2023, 6(5): 12450. |
3 | 李峻, 田阳, 杨斌, 等. 废旧锂离子电池正极材料有价金属回收研究现状[J]. 中国有色金属学报, 2024, 36(6): 1789-1808. |
Li J, Tian Y, Yang B, et al. Research status of valuable metal recovery of cathode materials of spent lithium-ion batteries[J]. The Chinese Journal of Nonferrous Metals, 2024, 36(6): 1789-1808. | |
4 | Zhang L G, Zhang Y, Xu Z M, et al. The foreseeable future of spent lithium-ion batteries: advanced upcycling for toxic electrolyte, cathode, and anode from environmental and technological perspectives[J]. Environmental Science & Technology, 2023, 57(36): 13270-13291. |
5 | Fan T, Liang W C, Guo W, et al. Life cycle assessment of electric v e h i c l e s ' lithium-ion batteries reused for energy storage[J]. Journal of Energy Storage, 2023, 71: 108126. |
6 | 肖忠良, 尹碧露, 宋刘斌, 等. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
Xiao Z L, Yin B L, Song L B, et al. Research progress of waste lithium-ion battery recycling process and its safety risk analysis[J]. CIESC Journal, 2023, 74(4): 1446-1456. | |
7 | 江洋, 彭长宏, 陈伟, 等. 废旧磷酸铁锂粉料综合回收中试研究[J]. 化工学报, 2024, 75(6): 2353-2361. |
Jiang Y, Peng C H, Chen W, et al. Pilot study on comprehensive recycling of waste lithium iron phosphate powder[J]. CIESC Journal, 2024, 75(6): 2353-2361. | |
8 | Naseri T, Mousavi S M. Treatment of spent lithium iron phosphate (LFP) batteries[J]. Current Opinion in Green and Sustainable Chemistry, 2024, 47: 100906. |
9 | Saju D, Ebenezer J, Chandran N, et al. Recycling of lithium iron phosphate cathode materials from spent lithium-ion batteries: a mini-review[J]. Industrial & Engineering Chemistry Research, 2023, 62(30): 11768-11783. |
10 | Li Y J, Dong L P, Shi P, et al. Selective recovery of lithium from lithium iron phosphate[J]. Journal of Power Sources, 2024, 598: 234158. |
11 | Xu Y L, Zhang B C, Ge Z F, et al. Advances and perspectives towards spent LiFePO4 battery recycling[J]. Journal of Cleaner Production, 2024, 434: 140077. |
12 | Liang Q, Yue H F, Wang S F, et al. Recycling and crystal regeneration of commercial used LiFePO4 cathode materials[J]. Electrochimica Acta, 2020, 330: 135323. |
13 | Qiu X J, Wang C Y, Xie L L, et al. Challenges and perspectives towards direct regeneration of spent LiFePO4 cathode[J]. Journal of Power Sources, 2024, 602: 234365. |
14 | Zhang J F, Zou J T, He D, et al. Molten salt infiltration–oxidation synergistic controlled lithium extraction from spent lithium iron phosphate batteries: an efficient, acid free, and closed-loop strategy[J]. Green Chemistry, 2023, 25(15): 6057-6066. |
15 | 颜群轩, 罗碧云, 陈嘉鑫, 等. 废旧磷酸铁锂电池可持续回收技术研究进展[J]. 矿冶工程, 2023, 43(4): 174-177, 181. |
Yan Q X, Luo B Y, Chen J X, et al. Progress in sustainable recycling of spent LiFePO4 batteries[J]. Mining and Metallurgical Engineering, 2023, 43(4): 174-177, 181. | |
16 | 张英杰, 许斌, 梁风, 等. 废旧磷酸铁锂电池正极材料的回收研究现状[J]. 人工晶体学报, 2019, 48(5):800-808. |
Zhang Y J, Xu B, Liang F, et al. Review on recycling cathode materials of spent lithium iron phosphate batteries[J]. Journal of Synthetic Crystals, 2019, 48(5): 800-808. | |
17 | Lei S Y, Sun W, Yang Y. Comprehensive technology for recycling and regenerating materials from spent lithium iron phosphate battery[J]. Environmental Science & Technology, 2024, 58(8): 3609-3628. |
18 | 肖忠良, 向优涛, 宋刘斌, 等. 机械化学法回收废旧锂离子电池正极材料中有价金属的研究进展[J]. 化工学报, 2023, 74(11): 4419-4432. |
Xiao Z L, Xiang Y T, Song L B, et al. Progress of mechanochemical recovery of valuable metals from used lithium-ion battery cathode materials[J]. CIESC Journal, 2023, 74(11): 4419-4432. | |
19 | Mahandra H, Ghahreman A. A sustainable process for selective recovery of lithium as lithium phosphate from spent LiFePO4 batteries[J]. Resources, Conservation and Recycling, 2021, 175: 105883. |
20 | Chen Z, Shen C, Liu F, et al. Selective separation and recovery of Li from spent LiFePO4 cathode materials by oxidation roasting followed by low-acid pressure leaching[J]. Metals, 2023, 13(11): 1884. |
21 | Yang Y X, Meng X Q, Cao H B, et al. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process[J]. Green Chemistry, 2018, 20(13): 3121-3133. |
22 | Du J W, Qing J L, Fang K Y, et al. The priority leaching of lithium from spent LiFePO4 cathode without the oxidization[J]. Resources, Conservation and Recycling, 2024, 202: 107374. |
23 | 鲁俊雀, 黄宁湘, 刘勇奇, 等. 磷酸铁锂正极粉选择性提锂[J]. 有色金属(冶炼部分), 2023, 12: 32-37. |
Lu J Q, Huang N X, Liu Y Q, et al. Selective extraction of lithium from lithium iron phosphate positive powder[J]. Nonferrous Metals(Extractive Metallurgy), 2023, 12: 32-37. | |
24 | Li H, Xing S Z, Liu Y, et al. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8017-8024. |
25 | Wang Y H, Wu J J, Hu G C, et al. Recovery of Li and Fe from spent lithium iron phosphate using organic acid leaching system[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(1): 336-346. |
26 | Chai X L, Yu X H, Shen Q F, et al. Study on green closed-loop regeneration of waste lithium iron phosphate based on oxalic acid system[J]. Waste Management, 2024, 181: 168-175. |
27 | Zhao T Y, Mahandra H, Choi Y, et al. A clean and sustainable method for recycling of lithium from spent lithium iron phosphate battery powder by using formic acid and oxygen[J]. Science of the Total Environment, 2024, 920: 170930. |
28 | Jiang S Q, Li X G, Gao Q, et al. Review on full-component green recycling of spent lithium iron phosphate cathode materials: from the perspective of economy and efficiency[J]. Separation and Purification Technology, 2023, 324: 124630. |
29 | Wang T, Wang X L, Lyv W, et al. Regeneration behavior of FePO4·2H2O from spent LiFePO4 under extremely acidic condition (pH0.8): mechanism study and the properties of regenerated LiFePO4 [J]. Separation and Purification Technology, 2024, 330: 125508. |
30 | Zeng Y J, Wang Y, Cai S C, et al. All-component recycling and reuse process for spent LiFePO4 cathodes[J]. Industrial & Engineering Chemistry Research, 2024, 63(16): 6847-6856. |
31 | Zheng R J, Zhao L, Wang W H, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J]. RSC Advances, 2016, 6(49): 43613-43625. |
32 | 王猛, 张家靓, 陈永强, 等. 退役磷酸铁锂电池回收技术综述[J]. 有色金属(冶炼部分), 2023, 5: 100-110. |
Wang M, Zhang J L, Chen Y Q, et al. Review on recycling technology of retired LiFePO4 batteries[J]. Nonferrous Metals(Extractive Metallurgy), 2023, 5: 100-110. | |
33 | Kulka A, Braun A, Huang T-W, et al. Evidence for Al doping in lithium sublattice of LiFePO4 [J]. Solid State Ionics, 2015, 270: 33-38. |
[1] | 赵博超, 聂一凡, 王雪婷, 田向勤, 田祎, 潘涔轩. 不同制液工艺对锰矿锰浸出回收及钙镁铁迁移影响[J]. 化工学报, 2024, 75(S1): 292-299. |
[2] | 郑晓园, 蔡炎嶙, 应芝, 王波, 豆斌林. 污水污泥磷形态亚临界水热转化研究[J]. 化工学报, 2024, 75(8): 2970-2982. |
[3] | 秦晓巧, 谭宏博, 温娜. 储能式低温空分系统热力学与经济性分析[J]. 化工学报, 2024, 75(7): 2409-2421. |
[4] | 吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654. |
[5] | 张天永, 张晶怡, 姜爽, 李彬, 吕东军, 陈都民, 陈雪. 弱酸性蓝AS染料排放的废盐制碳基吸附剂及利用[J]. 化工学报, 2024, 75(3): 890-899. |
[6] | 王灵洁, 高海龙, 靳继鹏, 王志浩, 李见波. 海水中的污染物对逆电渗析电堆性能的影响[J]. 化工学报, 2024, 75(2): 695-705. |
[7] | 刘家稳, 夏文成, 武锋, 彭耀丽, 谢广元. 废旧磷酸铁锂电池机械化学固相氧化回收锂机理[J]. 化工学报, 2024, 75(10): 3775-3782. |
[8] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[9] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[10] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[11] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[12] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[13] | 许万, 陈振斌, 张慧娟, 牛昉昉, 火婷, 刘兴盛. 线性温敏性聚合物嵌段调控的 |
[14] | 周昉, 刘剑, 张小松. 基于多参数评估原则筛选高温热泵用三元非共沸混合工质[J]. 化工学报, 2023, 74(11): 4487-4500. |
[15] | 武庭宇, 王超, 秦余涛, 庄钰, 都健. 乙酸乙酯/乙醇/水体系预分离萃取精馏工艺研究[J]. 化工学报, 2023, 74(11): 4578-4586. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 66
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 172
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||