化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4578-4586.DOI: 10.11949/0438-1157.20230830
收稿日期:
2023-08-13
修回日期:
2023-11-13
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
庄钰
作者简介:
武庭宇(2000—),男,硕士研究生,wtttyy@163.com
基金资助:
Tingyu WU(), Chao WANG, Yutao QIN, Yu ZHUANG(), Jian DU
Received:
2023-08-13
Revised:
2023-11-13
Online:
2023-11-25
Published:
2024-01-22
Contact:
Yu ZHUANG
摘要:
在工业生产过程中经常遇到含有大量水的乙酸乙酯/乙醇/水三元共沸体系,萃取精馏是实现共沸物有效分离的常见手段。对于某一组分含量较大的三元共沸物的萃取精馏分离,预分离的引入能够显著提升过程经济性。针对含有大量水的乙酸乙酯/乙醇/水三元共沸体系的分离,建立了常规三塔萃取精馏、含有预分离的四塔萃取精馏以及预分离塔与萃取剂回收塔耦合的三塔萃取精馏流程,并以年度总费用(TAC)最小为优化目标采用考虑惩罚函数的遗传算法对各流程进行经济优化以获得最优的操作参数和经济费用。经济优化结果表明,预分离塔与萃取剂回收塔耦合的三塔萃取精馏流程与常规的三塔萃取精馏流程相比,可节省27.1%的TAC与29.7%的能量消耗。同时,与含有预分离的四塔萃取精馏流程相比,预分离与萃取剂回收功能的耦合可降低9.9%的TAC与13.0%的能量消耗。
中图分类号:
武庭宇, 王超, 秦余涛, 庄钰, 都健. 乙酸乙酯/乙醇/水体系预分离萃取精馏工艺研究[J]. 化工学报, 2023, 74(11): 4578-4586.
Tingyu WU, Chao WANG, Yutao QIN, Yu ZHUANG, Jian DU. Study of extractive distillation processes with preconcentration for separating ethyl acetate/ethanol/water azeotropic mixture[J]. CIESC Journal, 2023, 74(11): 4578-4586.
1 | 燕超, 孙瑞, 朱金利, 等. 高能氧化剂ONPP的合成工艺优化[J]. 含能材料, 2023, 31(4): 332-337. |
Yan C, Sun R, Zhu J L, et al. Synthesis and performance of high-energy oxidizer ONPP[J]. Chinese Journal of Energetic Materials, 2023, 31(4): 332-337. | |
2 | 李权威, 刘乐乐, 赵丕琪, 等. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 242-248. |
Li Q W, Liu L L, Zhao P Q, et al. Composition design and performance assessment of superhydrophobic coating based on fluorine-silicone resin[J]. Materials Reports, 2023, 37(9): 242-248. | |
3 | 赵锦成, 杨固长, 杨柳, 等. 电解液对锂离子电池低温放电性能的影响[J]. 电池, 2013, 43(4): 192-194. |
Zhao J C, Yang G C, Yang L, et al. Effect of electrolyte on low temperature discharge performance of Li-ion battery[J]. Battery Bimonthly, 2013, 43(4): 192-194. | |
4 | 张丽琴. 乙酸乙酯生产工艺流程仿真研究[D]. 杭州: 浙江大学, 2005. |
Zhang L Q. Simulation study on production process of ethyl acetate[D]. Hangzhou: Zhejiang University, 2005. | |
5 | 周洋, 蒲霄, 崔咪芬, 等. 乙酸乙酯废水催化氧化工艺及宏观反应动力学研究[J]. 高校化学工程学报, 2020, 34(1): 157-162. |
Zhou Y, Pu X, Cui M F, et al. Study on apparent kinetics and reaction processes of catalytic oxidation of wastewater from ethyl acetate production[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(1): 157-162. | |
6 | Yang A, Su Y, Shi T, et al. Energy-efficient recovery of tetrahydrofuran and ethyl acetate by triple-column extractive distillation: entrainer design and process optimization[J]. Frontiers of Chemical Science and Engineering, 2022, 16(2): 303-315. |
7 | 胡松, 李进龙, 李木金, 等. 萃取精馏生产高纯度环氧丙烷的工艺研究[J]. 化工学报, 2019, 70(2): 670-677. |
Hu S, Li J L, Li M J, et al. Extractive refining process for production of propylene oxide with high purification[J]. CIESC Journal, 2019, 70(2): 670-677. | |
8 | 柳旭, 许松林, 王燕飞. 原甲酸三甲酯-醋酸萃取精馏全局多目标优化[J]. 化工学报, 2022, 73(10): 4518-4526. |
Liu X, Xu S L, Wang Y F. Global multi-objective optimization of trimethyl orthoformate-acetic acid extractive distillation[J]. CIESC Journal, 2022, 73(10): 4518-4526. | |
9 | Lyu H, Li S H, Cui C T, et al. Superstructure modeling and stochastic optimization of side-stream extractive distillation processes for the industrial separation of benzene/cyclohexane/cyclohexene[J]. Separation and Purification Technology, 2021, 257: 117907. |
10 | Wang C, Zhuang Y, Liu L L, et al. Control of energy-efficient extractive distillation configurations for separating the methanol/toluene azeotrope with intermediate-boiling entrainer[J]. Chemical Engineering and Processing-Process Intensification, 2020, 149: 107862. |
11 | Xu Y G, Li J L, Ye Q, et al. Design and optimization for the separation of tetrahydrofuran/isopropanol/water using heat pump assisted heat-integrated extractive distillation[J]. Separation and Purification Technology, 2021, 277: 119498. |
12 | Liang K, Li W S, Luo H T, et al. Energy-efficient extractive distillation process by combining preconcentration column and entrainer recovery column[J]. Industrial & Engineering Chemistry Research, 2014, 53(17): 7121-7131. |
13 | An Y, Li W S, Li Y, et al. Design/optimization of energy-saving extractive distillation process by combining preconcentration column and extractive distillation column[J]. Chemical Engineering Science, 2015, 135: 166-178. |
14 | Han D M, Chen Y H. Combining the preconcentration column and recovery column for the extractive distillation of ethanol dehydration with low transition temperature mixtures as entrainers[J]. Chemical Engineering and Processing-Process Intensification, 2018, 131: 203-214. |
15 | Zhang X D, He J, Cui C T, et al. A systematic process synthesis method towards sustainable extractive distillation processes with pre-concentration for separating the binary minimum azeotropes[J]. Chemical Engineering Science, 2020, 227: 115932. |
16 | Luyben W L. Control comparison of conventional extractive distillation with a new split-feed configuration[J]. Chemical Engineering and Processing-Process Intensification, 2016, 107: 29-41. |
17 | Zheng H, Li Y, Xu C J. Control of highly heat-integrated energy-efficient extractive distillation processes[J]. Industrial & Engineering Chemistry Research, 2017, 56(19): 5618-5635. |
18 | Cui C T, Zhang Q J, Zhang X D, et al. Process synthesis and plantwide control of intensified extractive distillation with preconcentration for separating the minimum-boiling azeotropes: a case study of acetonitrile dehydration[J]. Separation and Purification Technology, 2022, 285: 120397. |
19 | Zhang X D, Chen H, Cui C T, et al. Controllability assessment and intentional operation of extractive distillation configurations with preconcentration[J]. Separation and Purification Technology, 2022, 285: 120389. |
20 | Wang C, Zhuang Y, Qin Y T, et al. Design and eco-efficiency analysis of sustainable extractive distillation process combining preconcentration and solvent recovery functions for separating the tetrahydrofuran/ethanol/water ternary multi-azeotropic mixture[J]. Process Safety and Environmental Protection, 2022, 159: 795-808. |
21 | Jian X, Li J L, Ye Q, et al. Intensification and analysis of extractive distillation processes with preconcentration for separating ethyl acetate, isopropanol and water azeotropic mixtures[J]. Separation and Purification Technology, 2022, 287: 120499. |
22 | Yang A, Su Y, Sun S R, et al. Towards sustainable separation of the ternary azeotropic mixture based on the intensified reactive-extractive distillation configurations and multi-objective particle swarm optimization[J]. Journal of Cleaner Production, 2022, 332: 130116. |
23 | Wang C, Zhuang Y, Dong Y C, et al. Conceptual design of sustainable extractive distillation processes combining preconcentration and extractive distillation functions for separating ternary multi-azeotropic mixture[J]. Chemical Engineering Science, 2022, 263: 118088. |
24 | Yang A, Zou H C, Chien I L, et al. Optimal design and effective control of triple-column extractive distillation for separating ethyl acetate/ethanol/water with multiazeotrope[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7265-7283. |
25 | Olujić Ž, Sun L, de Rijke A, et al. Conceptual design of an internally heat integrated propylene-propane splitter[J]. Energy, 2006, 31(15): 3083-3096. |
26 | Luyben W L. Distillation Design and Control Using Aspen Simulation[M]. 2nd ed. Hoboken, NJ: Wiley, 2013. |
27 | 陈敬轩, 王晓红, 田增虎, 等. 基于离子液体的乙腈-乙醇-水共沸体系节能分离[J]. 石油学报(石油加工), 2023, 39(2): 310-320. |
Chen J X, Wang X H, Tian Z H, et al. Energy-saving separation of acetonitrile-ethanol-water azeotropic system based on ionic liquid[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(2): 310-320. | |
28 | Ma K W, Sahinidis N V, Bindlish R, et al. Data-driven strategies for extractive distillation unit optimization[J]. Computers & Chemical Engineering, 2022, 167: 107970. |
29 | 李乔, 田思琪, 冯泽民, 等. 甲醇和三甲氧基硅烷共沸物分离过程模拟和优化[J]. 化工进展, 2021, 40(5): 2431-2439. |
Li Q, Tian S Q, Feng Z M, et al. Simulation and optimization for separation processes of methanol and trimethoxysilane azeotrope[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2431-2439. | |
30 | 安维中, 胡仰栋, 袁希钢. 最优化技术在精馏过程综合中的应用及研究进展[J]. 计算机与应用化学, 2005, 22(5): 333-338. |
An W Z, Hu Y D, Yuan X G. Application and development of optimization techniques in distillation-based process synthesis[J]. Computers and Applied Chemistry, 2005, 22(5): 333-338. | |
31 | 崔佳, 李知春, 肖海成, 等. 乙腈-水萃取精馏及热集成改进工艺多目标优化[J]. 石油学报(石油加工), 2022, 38(5): 1135-1147. |
Cui J, Li Z C, Xiao H C, et al. Multi-objective optimization of acetonitrile-water extractive distillation and thermal integration improvement process[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(5): 1135-1147. | |
32 | 翟建, 刘育良, 李鲁闽, 等. 萃取精馏分离苯/环己烷共沸体系模拟与优化[J]. 化工学报, 2015, 66(9): 3570-3579. |
Zhai J, Liu Y L, Li L M, et al. Simulation and optimization of extractive distillation for separation of azeotropic benzene/cyclohexane system[J]. CIESC Journal, 2015, 66(9): 3570-3579. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[8] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[9] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[10] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[11] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[12] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[13] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[14] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[15] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 327
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 297
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||