化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3386-3393.DOI: 10.11949/0438-1157.20230562
张瑞航1(), 曹潘1, 杨锋2, 李昆1, 肖朋1, 邓春1(), 刘蓓1, 孙长宇1, 陈光进1
收稿日期:
2023-06-09
修回日期:
2023-08-17
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
邓春
作者简介:
张瑞航(1995—),男,博士研究生,1847000586@qq.com
基金资助:
Ruihang ZHANG1(), Pan CAO1, Feng YANG2, Kun LI1, Peng XIAO1, Chun DENG1(), Bei LIU1, Changyu SUN1, Guangjin CHEN1
Received:
2023-06-09
Revised:
2023-08-17
Online:
2023-08-25
Published:
2023-10-18
Contact:
Chun DENG
摘要:
天然气乙烷回收可为乙烷裂解制乙烯提供优质的原料。多孔纳米流体吸收-吸附耦合分离是一种新兴的气体分离技术,基于ZIF-8/水-乙二醇纳米流体,利用传统的吸收-解吸流程,可高效低耗地回收天然气中的乙烷。利用平衡级法对多孔纳米流体天然气乙烷回收工艺建模,提高乙烷产品纯度是流程模拟的一个重要目标,而模拟结果表明吸收-吸附塔理论板数和闪蒸压力是影响乙烷产品纯度的关键因素。随着吸收-吸附塔理论板数增加,乙烷产品纯度先明显升高,后趋于稳定。通过绘制y-x图可知,乙烷产品纯度难以持续升高的原因是操作线趋近了相平衡线。随着闪蒸压力降低,乙烷产品纯度升高,其原理为闪蒸压力影响了吸收-吸附塔的闪蒸再沸比,而闪蒸再沸比与乙烷产品纯度呈正相关。
中图分类号:
张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393.
Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid[J]. CIESC Journal, 2023, 74(8): 3386-3393.
组分 | 含量/%(mol) |
---|---|
C1 | 82.700 |
C2 | 9.730 |
C3 | 5.740 |
iC4 | 0.770 |
nC4 | 0.770 |
iC5 | 0.050 |
nC5 | 0.050 |
C6 | 0.010 |
N2 | 0.180 |
表1 天然气组成
Table 1 Composition of natural gas
组分 | 含量/%(mol) |
---|---|
C1 | 82.700 |
C2 | 9.730 |
C3 | 5.740 |
iC4 | 0.770 |
nC4 | 0.770 |
iC5 | 0.050 |
nC5 | 0.050 |
C6 | 0.010 |
N2 | 0.180 |
气体 种类 | 水中溶解度/ (mmol/g) | 乙二醇中溶解度/ (mmol/g) | ZIF-8中吸附量/ (mmol/g) |
---|---|---|---|
甲烷 | 0.0142 | 0.0680 | 0.260 |
乙烷 | 0.0204 | 0.182 | 2.04 |
表2 甲烷、乙烷在水、乙二醇中的溶解度和在ZIF-8中的吸附量
Table 2 Solubility of CH4/C2H6 in water/glycol and their adsorption capacity in ZIF-8
气体 种类 | 水中溶解度/ (mmol/g) | 乙二醇中溶解度/ (mmol/g) | ZIF-8中吸附量/ (mmol/g) |
---|---|---|---|
甲烷 | 0.0142 | 0.0680 | 0.260 |
乙烷 | 0.0204 | 0.182 | 2.04 |
吸收-吸附塔 理论板数 | 闪蒸压力/MPa | 解吸压力/MPa | 气液比 | 乙烷产品纯度/% |
---|---|---|---|---|
3 | 0.1 | 0.01 | 60 | 91.0 |
4 | 0.1 | 0.01 | 60 | 93.0 |
5 | 0.1 | 0.01 | 60 | 94.0 |
6 | 0.1 | 0.01 | 60 | 94.4 |
7 | 0.1 | 0.01 | 60 | 94.6 |
6 | 0.05 | 0.01 | 60 | 99.2 |
6 | 0.3 | 0.01 | 60 | 74.2 |
6 | 0.5 | 0.01 | 60 | 67.7 |
6 | 0.1 | 0.005 | 60 | 93.4 |
6 | 0.1 | 0.03 | 60 | 96.0 |
6 | 0.1 | 0.05 | 60 | 94.8 |
6 | 0.1 | 0.01 | 40 | 85.6 |
6 | 0.1 | 0.01 | 50 | 90.7 |
6 | 0.1 | 0.01 | 70 | 96.5 |
表3 工艺参数对乙烷产品纯度的影响
Table 3 Effects of process operating parameters on purity of ethane products
吸收-吸附塔 理论板数 | 闪蒸压力/MPa | 解吸压力/MPa | 气液比 | 乙烷产品纯度/% |
---|---|---|---|---|
3 | 0.1 | 0.01 | 60 | 91.0 |
4 | 0.1 | 0.01 | 60 | 93.0 |
5 | 0.1 | 0.01 | 60 | 94.0 |
6 | 0.1 | 0.01 | 60 | 94.4 |
7 | 0.1 | 0.01 | 60 | 94.6 |
6 | 0.05 | 0.01 | 60 | 99.2 |
6 | 0.3 | 0.01 | 60 | 74.2 |
6 | 0.5 | 0.01 | 60 | 67.7 |
6 | 0.1 | 0.005 | 60 | 93.4 |
6 | 0.1 | 0.03 | 60 | 96.0 |
6 | 0.1 | 0.05 | 60 | 94.8 |
6 | 0.1 | 0.01 | 40 | 85.6 |
6 | 0.1 | 0.01 | 50 | 90.7 |
6 | 0.1 | 0.01 | 70 | 96.5 |
P/MPa | Vtk/ (mol/h) | Ltk/ (mol/h) | LVtk/ (mol/h) | FR | DR | xtk,2/ %(mol) | yde,2/ %(mol) |
---|---|---|---|---|---|---|---|
0.03 | 349 | 10694 | 108 | 0.0326 | 3.23 | 99.9 | 99.9 |
0.05 | 298 | 10743 | 156 | 0.0278 | 1.91 | 99.8 | 99.7 |
0.07 | 257 | 10775 | 188 | 0.0239 | 1.37 | 99.1 | 98.9 |
0.09 | 224 | 10783 | 196 | 0.0208 | 1.14 | 96.7 | 95.9 |
0.1 | 212 | 10786 | 199 | 0.0197 | 1.07 | 95.4 | 94.4 |
0.2 | 151 | 10809 | 223 | 0.0140 | 0.678 | 84.9 | 82.4 |
0.3 | 119 | 10830 | 243 | 0.0110 | 0.489 | 77.3 | 74.4 |
表4 不同闪蒸压力、不同闪蒸再沸比下的乙烷产品纯度
Table 4 Purity of ethane products under different flash pressure and flash boilup ratio
P/MPa | Vtk/ (mol/h) | Ltk/ (mol/h) | LVtk/ (mol/h) | FR | DR | xtk,2/ %(mol) | yde,2/ %(mol) |
---|---|---|---|---|---|---|---|
0.03 | 349 | 10694 | 108 | 0.0326 | 3.23 | 99.9 | 99.9 |
0.05 | 298 | 10743 | 156 | 0.0278 | 1.91 | 99.8 | 99.7 |
0.07 | 257 | 10775 | 188 | 0.0239 | 1.37 | 99.1 | 98.9 |
0.09 | 224 | 10783 | 196 | 0.0208 | 1.14 | 96.7 | 95.9 |
0.1 | 212 | 10786 | 199 | 0.0197 | 1.07 | 95.4 | 94.4 |
0.2 | 151 | 10809 | 223 | 0.0140 | 0.678 | 84.9 | 82.4 |
0.3 | 119 | 10830 | 243 | 0.0110 | 0.489 | 77.3 | 74.4 |
1 | 温翯, 郭晓莉, 苟尕莲, 等. 乙烷裂解制乙烯的工艺研究进展[J]. 现代化工, 2020, 40(5): 47-51. |
Wen H, Guo X L, Gou G L, et al. Process research advances in ethane cracking to ethylene[J]. Modern Chemical Industry, 2020, 40(5): 47-51. | |
2 | 李月清, 陈庆利. 进口“乙烷制乙烯”产业链险象环生[J]. 中国石油企业, 2021(10): 42-43. |
Li Y Q, Chen Q L. The imported “ethane to ethylene” industrial chain is in danger[J]. China Petroleum Enterprise, 2021(10): 42-43. | |
3 | 饶何隆, 马国光. 天然气乙烷回收关键参数分析研究[J]. 北京化工大学学报(自然科学版), 2022, 49(1): 35-43. |
Rao H L, Ma G G. Analysis of the key parameters governing ethane recovery from natural gas[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2022, 49(1): 35-43. | |
4 | 何婷, 林文胜. 高含乙烷天然气氮膨胀液化分离流程[J]. 化工学报, 2018, 69(S2): 226-231. |
He T, Lin W S. Nitrogen expansion liquefaction and separation process for natural gas with high ethane content[J]. CIESC Journal, 2018, 69(S2): 226-231. | |
5 | 邵青楠, 顾鑫诚, 邓春, 等. 天然气处理工艺建模与模拟进展[J]. 石油科学通报, 2019, 4(2): 192-203. |
Shao Q N, Gu X C, Deng C, et al. Research advances in the simulation and modeling of natural gas treatment process[J]. Petroleum Science Bulletin, 2019, 4(2): 192-203. | |
6 | Park J H, Khan M S, Andika R, et al. Techno-economic evaluation of a novel NGL recovery scheme with nine patented schemes for offshore applications[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 2-17. |
7 | Campbell R E, Wilkinson J D, Rambo C L. Hydrocarbon gas processing: US4171964[P]. 1979-10-23. |
8 | 崔连来. 天然气深冷工艺装置提高乙烷收率工艺技术的研究与应用[J]. 石油与天然气化工, 2022, 51(3): 65-70. |
Cui L L. Research and application of improving ethane recovery rate approaches in natural gas cryogenic unit[J]. Chemical Engineering of Oil & Gas, 2022, 51(3): 65-70. | |
9 | Campbell R E, Wilkinson J D. Hydrocarbon gas processing: US4278457[P]. 1981-07-14. |
10 | Salas S D, Contreras-Salas L, Rubio-Dueñas P, et al. A multi-objective evolutionary optimization framework for a natural gas liquids recovery unit[J]. Computers & Chemical Engineering, 2021, 151: 107363. |
11 | Campbell R E, Wilkinson J D, Hudson H M. Hydrocarbon gas processing: US4889545[P]. 1989-12-26. |
12 | Kherbeck L, Chebbi R. Optimizing ethane recovery in turboexpander processes[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 292-297. |
13 | Chebeir J, Salas S D, Romagnoli J A. Operability assessment on alternative natural gas liquids recovery schemes[J]. Journal of Natural Gas Science and Engineering, 2019, 71: 102974. |
14 | Campbell R E, Wilkinson J D, Hudson H M. Hydrocarbon gas processing: US5568737[P]. 1996-10-29. |
15 | Zhang S J, Jiang H, Jing J Q, et al. Comprehensive comparison of enhanced recycle split vapour processes for ethane recovery[J]. Energy Reports, 2020, 6: 1819-1837. |
16 | Zhang S J, Jing J Q, Jiang H, et al. Advanced exergy analyses of modified ethane recovery processes with different refrigeration cycles[J]. Journal of Cleaner Production, 2020, 253: 119982. |
17 | Jiang H, Li H Y. Economic and thermodynamic comparison of enhanced recycle split vapor processes for ethane recovery under different rich feed compositions[J]. Energy Reports, 2021, 7: 8207-8227. |
18 | Guo P T, Chang M, Yan T A, et al. A pillared-layer metal-organic framework for efficient separation of C3H8/C2H6/CH4 in natural gas[J]. Chinese Journal of Chemical Engineering, 2022, 42: 10-16. |
19 | Shi R F, Lv D F, Chen Y W, et al. Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal-organic framework PCN-224[J]. Separation and Purification Technology, 2018, 207: 262-268. |
20 | Ponraj Y K, Borah B. Separation of methane from ethane and propane by selective adsorption and diffusion in MOF Cu-BTC: a molecular simulation study[J]. Journal of Molecular Graphics and Modelling, 2020, 97: 107574. |
21 | Salimi M, Pirouzfar V, Kianfar E. Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C2H6/CH4 separation[J]. Polymer Science, Series A, 2017, 59(4): 566-574. |
22 | Altintas C, Keskin S. Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures[J]. RSC Advances, 2017, 7(82): 52283-52295. |
23 | Ma Q L, Chen G J, Zhang L W. Vapor-hydrate phases equilibrium of (CH4+C2H6) and (CH4+C2H4) systems[J]. Petroleum Science, 2008, 5(4): 359-366. |
24 | O'Reilly N, Giri N, James S. Porous liquids[J]. Chemistry - A European Journal, 2007, 13(11): 3020-3025. |
25 | Wang D C, Xin Y Y, Yao D D, et al. Shining light on porous liquids: from fundamentals to syntheses, applications and future challenges[J]. Advanced Functional Materials, 2022, 32(1): 2104162. |
26 | 宇国佳, 靳冬玉, 周智勇, 等. 多孔液体的设计合成与应用研究进展[J]. 化工学报, 2023, 74(1): 257-275. |
Yu G J, Jin D Y, Zhou Z Y, et al. Advances in the design, synthesis and application of porous liquids[J]. CIESC Journal, 2023, 74(1): 257-275. | |
27 | Gomes M C, Pison L, Červinka C, et al. Porous ionic liquids or liquid metal-organic frameworks?[J]. Angewandte Chemie International Edition, 2018, 57(37): 11909-11912. |
28 | Knebel A, Bavykina A, Datta S J, et al. Solution processable metal-organic frameworks for mixed matrix membranes using porous liquids[J]. Nature Materials, 2020, 19(12): 1346-1353. |
29 | Cahir J, Tsang M Y, Lai B B, et al. Type 3 porous liquids based on non-ionic liquid phases—a broad and tailorable platform of selective, fluid gas sorbents[J]. Chemical Science, 2020, 11(8): 2077-2084. |
30 | Liu H, Liu B, Lin L C, et al. A hybrid absorption-adsorption method to efficiently capture carbon[J]. Nature Communications, 2014, 5: 5147. |
31 | Peng X W, Jia C Z, Qiao Z C, et al. A new energy efficient process for hydrogen purification using ZIF-8/glycol-water slurry: experimental study and process modeling[J]. International Journal of Hydrogen Energy, 2021, 46(63): 32081-32098. |
32 | 宗杰, 马庆兰, 陈光进, 等. ZIF-8/乙二醇体系分离捕集CO2溶解度的模拟计算[J]. 化工学报, 2018, 69(10): 4276-4283. |
Zong J, Ma Q L, Chen G J, et al. Simulation of solubility for separating carbon dioxide from gas mixture using ZIF-8/glycol slurry[J]. CIESC Journal, 2018, 69(10): 4276-4283. | |
33 | Chen W, Guo X N, Zou E B, et al. A continuous and high-efficiency process to separate coal bed methane with porous ZIF-8 slurry: experimental study and mathematical modelling[J]. Green Energy & Environment, 2020, 5(3): 347-363. |
34 | 彭晓婉, 郭笑楠, 邓春, 等. ZIF-8浆液法分离CH4/N2的双吸收-吸附塔工艺流程建模与模拟[J]. 化工学报, 2023, 74(2): 784-795. |
Peng X W, Guo X N, Deng C, et al. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry[J]. CIESC Journal, 2023, 74(2): 784-795. | |
35 | Peng X W, Zhang R H, Wang Z X, et al. High efficient separation of H2/CH4 using ZIF-8/glycol-water slurry: process modelling and multi-objective optimization[J]. International Journal of Hydrogen Energy, 2023, 48(36): 13489-13502. |
36 | Liu H, Pan Y, Liu B, et al. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature[J]. Scientific Reports, 2016, 6: 21114. |
37 | Chen W, Zou E B, Zuo J Y, et al. Separation of ethane from natural gas using porous ZIF-8/water-glycol slurry[J]. Industrial & Engineering Chemistry Research, 2019, 58(23): 9997-10006. |
38 | Li K, Tang H, Huang Z X, et al. Efficient recovery of C2+ alkanes from natural gas using porous ZIF-8/iso-hexadecane slurry on laboratory and pilot-scale[J]. Separation and Purification Technology, 2023, 319: 124084. |
39 | Zhang R H, Wang Z X, Wei X M, et al. Modelling and optimization of ethane recovery process from natural gas via ZIF-8/water-glycol slurry with low energy consumption[J]. Energy, 2023, 263: 125645. |
40 | 王雨帆, 李玉星, 王武昌, 等. LNG接收站冷能用于轻烃回收工艺[J]. 石油与天然气化工, 2015, 44(3): 44-49. |
Wang Y F, Li Y X, Wang W C, et al. Process of light hydrocarbons recovery from LNG with cryogenic energy utilized in LNG terminal[J]. Chemical Engineering of Oil & Gas, 2015, 44(3): 44-49. | |
41 | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[7] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[8] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[9] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[10] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[11] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[12] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[13] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[14] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[15] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 639
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 206
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||