化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3775-3782.DOI: 10.11949/0438-1157.20240557
收稿日期:
2024-05-26
修回日期:
2024-06-10
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
夏文成
作者简介:
刘家稳(1999—),男,硕士研究生,1770028156@qq.com
基金资助:
Jiawen LIU(), Wencheng XIA(
), Feng WU, Yaoli PENG, Guangyuan XIE
Received:
2024-05-26
Revised:
2024-06-10
Online:
2024-10-25
Published:
2024-11-04
Contact:
Wencheng XIA
摘要:
采用K2S2O8作为氧化剂,分别通过氧化浸出、机械活化联合氧化浸出、机械固相氧化联合水浸三种方法对废旧磷酸铁锂(LiFePO4)电池正极粉末进行处理。结果表明,在三种方式最优条件下,氧化浸出方式的Li浸出率为89.03%(质量分数)、机械活化联合氧化浸出方式的Li浸出率为92.36%(质量分数),机械固相氧化联合水浸方式的效果最佳,Li浸出率为98.26%(质量分数),此时Fe化合物与Li完全分离,选择性较高。通过添加K3PO4将浸出的锂离子以Li3PO4沉淀的形式提取回收,经电感耦合等离子体质谱仪检测,纯度可达98.67%(质量分数)。X射线衍射和X射线光电子能谱分析浸出机理,结果表明,在机械化学固相氧化过程中,机械力不仅诱导了LiFePO4粒度的减小,还作为氧化反应的驱动力,使得Li+迁出,Fe(Ⅱ)被氧化为Fe(Ⅲ),为之后的水浸过程提供了良好条件,实现了Li和Fe的选择性分离。
中图分类号:
刘家稳, 夏文成, 武锋, 彭耀丽, 谢广元. 废旧磷酸铁锂电池机械化学固相氧化回收锂机理[J]. 化工学报, 2024, 75(10): 3775-3782.
Jiawen LIU, Wencheng XIA, Feng WU, Yaoli PENG, Guangyuan XIE. Mechanism study on mechanochemical solid-phase oxidation recovery of spent LiFePO4 batteries[J]. CIESC Journal, 2024, 75(10): 3775-3782.
1 | Xu Z R, Gao L B, Liu Y J, et al. Review—recent developments in the doped LiFePO4 cathode materials for power lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(13): A2600-A2610. |
2 | Wei G L, Liu Y X, Jiao B L, et al. Direct recycling of spent Li-ion batteries: challenges and opportunities toward practical applications[J]. iScience, 2023, 26(9): 107676. |
3 | Lebedeva N P, Boon-Brett L. Considerations on the chemical toxicity of contemporary Li-ion battery electrolytes and their components[J]. Journal of the Electrochemical Society, 2016, 163(6): A821-A830. |
4 | Ruan J Q, Tong Y C, Ran J Y, et al. Simplifying and optimizing Li4SiO4 preparation from spent LiFePO4 batteries with enhanced CO2 adsorption[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(38): 14158-14166. |
5 | Saju D, Ebenezer J, Chandran N, et al. Recycling of lithium iron phosphate cathode materials from spent lithium-ion batteries: a mini-review[J]. Industrial & Engineering Chemistry Research, 2023, 62(30): 11768-11783. |
6 | Shangguan E B, Fu S Q, Wu S Q, et al. Evolution of spent LiFePO4 powders into LiFePO4/C/FeS composites: a facile and smart approach to make sustainable anodes for alkaline Ni-Fe secondary batteries[J]. Journal of Power Sources, 2018, 403: 38-48. |
7 | Wu J, MacKenzie A, Sharma N. Recycling lithium-ion batteries: adding value with multiple lives[J]. Green Chemistry, 2020, 22(7): 2244-2254. |
8 | Lin J, Li L, Fan E S, et al. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18482-18489. |
9 | Hu G R, Gong Y F, Peng Z D, et al. Direct recycling strategy for spent lithium iron phosphate powder: an efficient and wastewater-free process[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(35): 11606-11616. |
10 | Chen J P, Li Q W, Song J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506. |
11 | Song X, Hu T, Liang C, et al. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J]. RSC Advances, 2017, 7(8): 4783-4790. |
12 | Li X L, Zhang J, Song D W, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345: 78-84. |
13 | Zhang X X, Xue Q, Li L, et al. Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 7041-7049. |
14 | Liu Y, Lv W G, Zheng X H, et al. Near-to-stoichiometric acidic recovery of spent lithium-ion batteries through induced crystallization[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(8): 3183-3194. |
15 | Meshram P, Mishra A, Abhilash, et al. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids-A review[J]. Chemosphere, 2020, 242: 125291. |
16 | Yao Y L, Zhu M Y, Zhao Z, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13611-13627. |
17 | Chagnes A, Pospiech B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(7): 1191-1199. |
18 | Li H, Xing S Z, Liu Y, et al. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8017-8024. |
19 | Shangguan E B, Wang Q, Wu C K, et al. Novel application of repaired LiFePO4 as a candidate anode material for advanced alkaline rechargeable batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13312-13323. |
20 | Xiao J F, Li J, Xu Z M. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives[J]. Environmental Science & Technology, 2020, 54(1): 9-25. |
21 | Dai Y, Xu Z D, Hua D, et al. Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: an acid-free, efficient, and selective process[J]. Journal of Hazardous Materials, 2020, 396: 122707. |
22 | Zheng R J, Zhao L, Wang W H, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J]. RSC Advances, 2016, 6(49): 43613-43625. |
23 | Zhang J L, Hu J T, Liu Y B, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631. |
24 | Shiga T, Kondo H, Kato Y, et al. Mediator catalyst for lithium fluoride decomposition for lithium recovery[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(5): 2260-2266. |
25 | 马伊, 曹世伟, 王家骏, 等. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
Ma Y, Cao S W, Wang J J, et al. Research progress of recycling cathode materials for waste lithium ion batteries in deep eutectic solvents[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. | |
26 | Howard J L, Cao Q, Browne D L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer?[J]. Chemical Science, 2018, 9(12): 3080-3094. |
27 | Wang M M, Tan Q Y, Huang Q F, et al. Converting spent lithium cobalt oxide battery cathode materials into high-value products via a mechanochemical extraction and thermal reduction route[J]. Journal of Hazardous Materials, 2021, 413: 125222. |
28 | Liu K, Yang J K, Hou H J, et al. Facile and cost-effective approach for copper recovery from waste printed circuit boards via a sequential mechanochemical/leaching/recrystallization process[J]. Environmental Science & Technology, 2019, 53(5): 2748-2757. |
29 | Yin X F, Wu Y F, Tian X M, et al. Green recovery of rare earths from waste cathode ray tube phosphors: oxidative leaching and kinetic aspects[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 7080-7089. |
30 | Wang M M, Tan Q Y, Li J H. Unveiling the role and mechanism of mechanochemical activation on lithium cobalt oxide powders from spent lithium-ion batteries[J]. Environmental Science & Technology, 2018, 52(22): 13136-13143. |
31 | Shentu H J, Xiang B, Cheng Y J, et al. A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery[J]. Environmental Technology & Innovation, 2021, 23: 101569. |
32 | Dedryvère R, Maccario M, Croguennec L, et al. X-ray photoelectron spectroscopy investigations of carbon-coated Li x FePO4 materials[J]. Chemistry of Materials, 2008, 20(22): 7164-7170. |
33 | Castro L, Dedryvère R, El Khalifi M, et al. The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-lab XPS[J]. The Journal of Physical Chemistry C, 2010, 114(41): 17995-18000. |
34 | Zhou F, Kang K, Maxisch T, et al. The electronic structure and band gap of LiFePO4 and LiMnPO4 [J]. Solid State Communications, 2004, 132(3/4): 181-186. |
35 | Mahmud S, Rahman M, Kamruzzaman M, et al. Recent advances in lithium-ion battery materials for improved electrochemical performance: a review[J]. Results in Engineering, 2022, 15: 100472. |
[1] | 唐宇昊, 张迎迎, 赵智伟, 鲁梦悦, 张飞飞, 王小青, 杨江峰. 弱极性超微孔Sc/In-CPM-66A用于CH4/N2吸附分离性能[J]. 化工学报, 2024, 75(9): 3210-3220. |
[2] | 郑晓园, 蔡炎嶙, 应芝, 王波, 豆斌林. 污水污泥磷形态亚临界水热转化研究[J]. 化工学报, 2024, 75(8): 2970-2982. |
[3] | 吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643. |
[4] | 秦晓巧, 谭宏博, 温娜. 储能式低温空分系统热力学与经济性分析[J]. 化工学报, 2024, 75(7): 2409-2421. |
[5] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
[6] | 王涛虹, 王超, 李政, 刘莹, 田歌, 常刚刚, 阳晓宇, 鲍宗必. 固载Cu(Ⅰ)的π络合MOF吸附剂用于乙烷/乙烯的选择性分离[J]. 化工学报, 2024, 75(7): 2565-2573. |
[7] | 吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654. |
[8] | 孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘. 功能化多孔氮化碳材料对铀的吸附性能研究[J]. 化工学报, 2024, 75(4): 1616-1629. |
[9] | 张凯博, 沈佳新, 李玉霞, 谈朋, 刘晓勤, 孙林兵. Y沸石中Cu(Ⅰ)的可控构筑及其乙烯/乙烷吸附分离性能研究[J]. 化工学报, 2024, 75(4): 1607-1615. |
[10] | 张天永, 张晶怡, 姜爽, 李彬, 吕东军, 陈都民, 陈雪. 弱酸性蓝AS染料排放的废盐制碳基吸附剂及利用[J]. 化工学报, 2024, 75(3): 890-899. |
[11] | 王灵洁, 高海龙, 靳继鹏, 王志浩, 李见波. 海水中的污染物对逆电渗析电堆性能的影响[J]. 化工学报, 2024, 75(2): 695-705. |
[12] | 李泓宇, 刘祥坤, 施尧, 曹约强, 钱刚, 段学志. 颗粒分辨的乙炔选择性加氢固定床反应器数值模拟[J]. 化工学报, 2024, 75(10): 3610-3622. |
[13] | 刘琦, 陈子康, 朴宇, 肖鹏, 葛亚粉, 巩雁军. 烃类催化裂解高选择性制低碳烯烃的分子筛催化剂[J]. 化工学报, 2024, 75(1): 120-137. |
[14] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[15] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 200
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||