化工学报 ›› 2023, Vol. 74 ›› Issue (9): 3946-3955.DOI: 10.11949/0438-1157.20230474
收稿日期:
2023-05-12
修回日期:
2023-07-24
出版日期:
2023-09-25
发布日期:
2023-11-20
通讯作者:
曾炜
作者简介:
王阳(1995—)男,硕士研究生,wangy1423@163.com
基金资助:
Yang WANG1,2(), Yongqiang DAI2, Wei ZENG2()
Received:
2023-05-12
Revised:
2023-07-24
Online:
2023-09-25
Published:
2023-11-20
Contact:
Wei ZENG
摘要:
目前离子导体热电材料在低品位热源方面的热电转换研究已有一定进展,但仍存在热电转换效率低和可持续性差等问题。研究了2, 5-二羟基苯磺酸盐(HQS)在不同条件下对离子热电水凝胶材料热电性能的影响。利用质子耦合电子转移(PCET)反应协同高扩散系数的质子的Soret效应,结果表明引入HQS可以提升热电性能,其热电势19.16 mV·K-1,离子热电优值0.98,热电转换效率为0.19%。在20 K温差下,可以维持120 mW·m-2的功率输出近2.5 h。
中图分类号:
王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955.
Yang WANG, Yongqiang DAI, Wei ZENG. Study of the enhanced thermoelectric properties of ionic hydrogel materials by 2,5-dihydroxybenzenesulfonate[J]. CIESC Journal, 2023, 74(9): 3946-3955.
图5 纯酸离子热电水凝胶与HQS离子热电水凝胶的开路电压建立响应变化
Fig.5 The open circuit voltage establishment response of pure acid ion thermoelectric hydrogel and HQS ion thermoelectric hydrogel
图6 不同浓度HQS离子热电水凝胶及纯酸离子水凝胶的交流阻抗图谱与电导率变化
Fig.6 AC impedance profiles and conductivity changes of HQS ionic thermoelectric hydrogels with different concentrations and pure acid ionic hydrogels
ΔT/K | Vc/V | Ic/mA | Va/V | Ia/mA | |Vc/Va| | |Ic/Ia| |
---|---|---|---|---|---|---|
5 | -0.38 | -3.32 | 0.42 | 3.02 | 0.90 | 1.10 |
10 | -0.44 | -4.52 | 0.45 | 4.22 | 0.98 | 1.07 |
15 | -0.46 | -6.46 | 0.46 | 6.68 | 1.00 | 0.97 |
20 | -0.41 | -7.06 | 0.42 | 7.92 | 0.98 | 0.89 |
25 | -0.37 | -6.63 | 0.39 | 7.63 | 0.95 | 0.87 |
30 | -0.35 | -5.72 | 0.38 | 7.07 | 0.92 | 0.81 |
表1 HQS离子热电水凝胶循环伏安数据变化
Table 1 Cyclic voltammetry data variation of HQS ionic thermoelectric hydrogels
ΔT/K | Vc/V | Ic/mA | Va/V | Ia/mA | |Vc/Va| | |Ic/Ia| |
---|---|---|---|---|---|---|
5 | -0.38 | -3.32 | 0.42 | 3.02 | 0.90 | 1.10 |
10 | -0.44 | -4.52 | 0.45 | 4.22 | 0.98 | 1.07 |
15 | -0.46 | -6.46 | 0.46 | 6.68 | 1.00 | 0.97 |
20 | -0.41 | -7.06 | 0.42 | 7.92 | 0.98 | 0.89 |
25 | -0.37 | -6.63 | 0.39 | 7.63 | 0.95 | 0.87 |
30 | -0.35 | -5.72 | 0.38 | 7.07 | 0.92 | 0.81 |
1 | Forman C, Muritala I K, Pardemann R, et al. Estimating the global waste heat potential[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1568-1579. |
2 | Quickenden T I, Mua Y. A review of power generation in aqueous thermogalvanic cells[J]. Journal of the Electrochemical Society, 1995, 142(11): 3985-3994. |
3 | Li T, Zhang X, Lacey S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials, 2019, 18(6): 608-613. |
4 | Chipman J. The Soret effect[J]. Journal of the American Chemical Society, 1926, 48(10): 2577-2589. |
5 | Alam H, Ramakrishna S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials[J]. Nano Energy, 2013, 2(2): 190-212. |
6 | Wu X, Gao N W, Jia H Y, et al. Thermoelectric converters based on ionic conductors[J]. Chemistry-An Asian Journal, 2021, 16(2): 129-141. |
7 | Choi P, Jalani N H, Datta R. Thermodynamics and proton transport in Nafion(Ⅰ): Membrane swelling, sorption, and ion-exchange equilibrium[J]. Journal of the Electrochemical Society, 2005, 152(3): E84-E89. |
8 | Choi P, Jalani N H, Datta R. Thermodynamics and proton transport in Nafion(Ⅱ): Proton diffusion mechanisms and conductivity[J]. Journal of the Electrochemical Society, 2005, 152(3): E123-E130. |
9 | Choi P, Jalani N H, Datta R. Thermodynamics and proton transport in Nafion(Ⅲ): Proton transport in Nafion/sulfated ZrO2 nanocomposite membranes[J]. Journal of the Electrochemical Society, 2005, 152(8): A1548-A1554. |
10 | Jalani N H, Choi P, Datta R. TEOM: a novel technique for investigating sorption in proton-exchange membranes[J]. Journal of Membrane Science, 2005, 254(1/2): 31-38. |
11 | Alt H, Binder H, Köhling A, et al. Investigation into the use of quinone compounds-for battery cathodes[J]. Electrochimica Acta, 1972, 17(5): 873-887. |
12 | Guo B S, Hoshino Y, Gao F, et al. Thermocells driven by phase transition of hydrogel nanoparticles[J]. Journal of the American Chemical Society, 2020, 142(41): 17318-17322. |
13 | Chen L B, Bai H, Huang Z F, et al. Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors[J]. Energy & Environmental Science, 2014, 7(5): 1750-1759. |
14 | Deng Q J, Tian C C, Luo Z B, et al. Organic 2,5-dihydroxy-1,4-benzoquinone potassium salt with ultrahigh initial coulombic efficiency for potassium-ion batteries[J]. Chemical Communications, 2020, 56(81): 12234-12237. |
15 | Frackowiak E, Meller M, Menzel J, et al. Redox-active electrolyte for supercapacitor application[J]. Faraday Discussions, 2014, 172: 179-198. |
16 | Komura T, Yamaguchi T, Furuta K, et al. Irreversible transformation of polypyrrole-bound viologen with two-electron reduction in acidic aqueous solutions[J]. Journal of Electroanalytical Chemistry, 2002, 534(2): 123-130. |
17 | Zhang Z J, Chen X Y. Illustrating the effect of electron withdrawing and electron donating groups adherent to p-hydroquinone on supercapacitor performance: the cases of sulfonic acid and methoxyl groups[J]. Electrochimica Acta, 2018, 282: 563-574. |
18 | Wang Y, Dai Y Q, Li L B, et al. Proton-coupled electron transfer aided thermoelectric energy conversion and storage[J]. Angewandte Chemie International Edition, 2023, 62(35): 202219136. |
19 | 冉广芬, 马海州, 孟瑞英, 等. 四苯硼钠-季铵盐容量法快速测钾[J]. 盐湖研究, 2009, 17(2): 39-42. |
Ran G F, Ma H Z, Meng R Y, et al. Rapid determination of potassium content by sodium tetraphenylboron-quaternary ammonium salt volumetric method[J]. Journal of Salt Lake Research, 2009, 17(2): 39-42. | |
20 | Gao H C, Guo B K, Song J E, et al. A composite gel-polymer/glass-fiber electrolyte for sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(9): 1402235. |
21 | Wang H, Hsu J H, Yi S I, et al. Thermally driven large N-type voltage responses from hybrids of carbon nanotubes and poly(3,4-ethylenedioxythiophene) with tetrakis(dimethylamino)ethylene[J]. Advanced Materials, 2015, 27(43): 6855-6861. |
22 | Kim S L, Lin H T, Yu C. Thermally chargeable solid-state supercapacitor[J]. Advanced Energy Materials, 2016, 6(18): 1600546. |
23 | Zhao D, Wang H, Khan Z U, et al. Ionic thermoelectric supercapacitors[J]. Energy & Environmental Science, 2016, 9(4): 1450-1457. |
24 | Li Y C, Li Q K, Zhang X B, et al. 3D hierarchical electrodes boosting ultrahigh power output for gelatin-KCl-FeCN4–/ 3– ionic thermoelectric cells[J]. Advanced Energy Materials, 2022, 12(14): 2103666. |
25 | Buckingham M A, Marken F, Aldous L. The thermoelectrochemistry of the aqueous iron(ⅱ)/iron(ⅲ) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion[J]. Sustainable Energy & Fuels, 2018, 2(12): 2717-2726. |
26 | Wu J, Black J J, Aldous L. Thermoelectrochemistry using conventional and novel gelled electrolytes in heat-to-current thermocells[J]. Electrochimica Acta, 2017, 225: 482-492. |
27 | Zhao D, Martinelli A, Willfahrt A, et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles[J]. Nature Communications, 2019, 10: 1093. |
28 | Duan J J, Feng G, Yu B Y, et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest[J]. Nature Communications, 2018, 9: 5146. |
29 | Cheng H L, He X, Fan Z, et al. Flexible quasi-solid state ionogels with remarkable Seebeck coefficient and high thermoelectric properties[J]. Advanced Energy Materials, 2019, 9(32): 1901085. |
30 | Han C G, Qian X, Li Q K, et al. Giant thermopower of ionic gelatin near room temperature[J]. Science, 2020, 368(6495): 1091-1098. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[3] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[4] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[5] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[6] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[7] | 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884. |
[8] | 聂新斌, 张德浩, 颜伟城. 功能型微泡材料的研究进展[J]. 化工学报, 2021, 72(8): 3984-3996. |
[9] | 韩笑,陈雨亭,苏宝根,鲍宗必,张治国,杨亦文,任其龙,杨启炜. 己烷异构体吸附分离材料研究进展[J]. 化工学报, 2021, 72(7): 3445-3465. |
[10] | 马嘉壮, 陈颖, 李凯涛, 林彦军. 镁基插层结构功能材料研究进展[J]. 化工学报, 2021, 72(6): 2922-2933. |
[11] | 高娃, 冉祥堃, 赵汗青, 赵宇飞. 镁基水滑石催化材料的研究进展[J]. 化工学报, 2021, 72(6): 2934-2956. |
[12] | 陈润道, 郑芳, 郭立东, 杨启炜, 张治国, 杨亦文, 任其龙, 鲍宗必. 稀有气体Xe/Kr吸附分离研究进展[J]. 化工学报, 2021, 72(1): 14-26. |
[13] | 周威, 陈立, 杜京城, 谭陆西, 董立春, 周才龙. 仿生雾水收集材料:从基础研究到性能提升策略[J]. 化工学报, 2020, 71(10): 4532-4552. |
[14] | 温霜, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 肠靶向海藻酸钙基微胶囊的制备及控释性能研究[J]. 化工学报, 2020, 71(8): 3797-3806. |
[15] | 张亚婷, 张博超, 张建兰, 李可可, 党永强, 段瑛峰. “自下而上”化学合成纳米石墨烯的研究进展[J]. 化工学报, 2020, 71(6): 2628-2642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||