1 |
Lu X, Ye X P, Zhou M, et al. The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China[J]. Nature Communications, 2021, 12: 5021.
|
2 |
邱晶, 赵明, 王健礼, 等. 地表臭氧分解用氧化锰研究进展[J]. 材料导报, 2021, 35(21): 21050-21057.
|
|
Qiu J, Zhao M, Wang J L, et al. Research progress of manganese dioxide catalyst for ozone decomposition[J]. Materials Reports, 2021, 35(21): 21050-21057.
|
3 |
Lu X, Zhang L, Wang X L, et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013[J]. Environmental Science & Technology Letters, 2020,7(4): 240-247.
|
4 |
Yang S, Zhu Z X, Wei F, et al. Carbon nanotubes/activated carbon fiber based air filter media for simultaneous removal of particulate matter and ozone[J]. Building and Environment, 2017, 125: 60-66.
|
5 |
Seltzer K M, Shindell D T, Malley C S. Measurement-based assessment of health burdens from long-term ozone exposure in the United States, Europe, and China[J]. Environmental Research Letters, 2018, 13(10): 104018.
|
6 |
张瑞阳, 王姝焱, 黎邦鑫, 等. 气相臭氧分解催化材料的研究进展[J]. 材料导报, 2021, 35(21): 21037-21049.
|
|
Zhang R Y, Wang S Y, Li B X, et al. Research progress of gaseous ozone decomposition catalysts[J]. Materials Reports, 2021, 35(21): 21037-21049.
|
7 |
Shao X F, Li X T, Ma J Z, et al. Terminal hydroxyl groups on Al2O3 supports influence the valence state and dispersity of Ag nanoparticles: implications for ozone decomposition[J]. ACS Omega, 2021, 6(16): 10715-10722.
|
8 |
Li X T, Ma J Z, He H. Tuning the chemical state of silver on Ag-Mn catalysts to enhance the ozone decomposition performance[J]. Environmental Science & Technology, 2020, 54(18): 11566-11575.
|
9 |
Yang L, Ma J Z, Li X T, et al. Improving the catalytic performance of ozone decomposition over Pd-Ce-OMS-2 catalysts under harsh conditions[J]. Catalysis Science & Technology, 2020, 10(22): 7671-7680.
|
10 |
Ji J, Yu Y, Cao S, et al. Enhanced activity and water tolerance promoted by Ce on MnO/ZSM-5 for ozone decomposition[J]. Chemosphere, 2021, 280: 130664.
|
11 |
黎邦鑫, 张骞, 肖杰, 等. Fe增强Ni2(CO3)(OH)2臭氧分解抗湿性与催化性能[J]. 无机材料学报, 2022, 37(1): 45-50.
|
|
Li B X, Zhang Q, Xiao J, et al. Iron-doping enhanced basic nickel carbonate for moisture resistance and catalytic performance of ozone decomposition[J]. Journal of Inorganic Materials, 2022, 37(1): 45-50.
|
12 |
Sun Z B, Si Y N, Zhao S N, et al. Ozone decomposition by a manganese-organic framework over the entire humidity range[J]. Journal of the American Chemical Society, 2021, 143(13): 5150-5157.
|
13 |
Liang X S, Wang L S, Wen T C, et al. Mesoporous poorly crystalline α-Fe2O3 with abundant oxygen vacancies and acid sites for ozone decomposition[J]. Science of the Total Environment, 2022, 804: 150161.
|
14 |
Gong S Y, Chen J Y, Wu X F, et al. In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition[J]. Catalysis Communications, 2018, 106: 25-29.
|
15 |
Rahimi M G, Wang A Q, Ma G J, et al. A one-pot synthesis of a monolithic Cu2O/Cu catalyst for efficient ozone decomposition[J]. RSC Advances, 2020, 10(67): 40916-40922.
|
16 |
Wei L L, Chen H X, Wei Y, et al. Ce-promoted Mn/ZSM-5 catalysts for highly efficient decomposition of ozone[J]. Journal of Environmental Sciences, 2021, 103: 219-228.
|
17 |
Zhu G X, Zhu W, Lou Y, et al. Encapsulate α-MnO2 nanofiber within graphene layer to tune surface electronic structure for efficient ozone decomposition[J]. Nature Communications, 2021, 12: 4152.
|
18 |
Gao L J, Fu Q, Wei M M, et al. Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells[J]. ACS Catalysis, 2016, 6(10): 6814-6822.
|
19 |
Zheng Q, Cao Y H, Huang N J, et al. Selective exposure of BiOI oxygen-rich {110} facet induced by BN nanosheets for enhanced photocatalytic oxidation performance[J]. Acta Physico-Chimica Sinica, 2021, 37(8): 2009063.
|
20 |
Cao Y H, Zhang R Y, Zheng Q, et al. Dual functions of O-atoms in the g-C3N4/BO0.2N0.8 interface: oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic molecular oxygen activation[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 34432-34440.
|
21 |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review. B, Condensed Matter, 1996, 54(16): 11169-11186.
|
22 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
|
23 |
Cao Y H, Zhang R Y, Zhou T L, et al. B—O bonds in ultrathin boron nitride nanosheets to promote photocatalytic carbon dioxide conversion[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9935-9943.
|
24 |
何忠义, 贾广跃, 张萌萌, 等. 纳米六方氮化硼负载离子液体润滑添加剂的摩擦学特性[J]. 化工学报, 2020, 71(9): 4303-4313.
|
|
He Z Y, Jia G Y, Zhang M M, et al. Tribological performance of hexagonal boron nitride supported ionic liquid lubricant additives[J]. CIESC Journal, 2020, 71(9): 4303-4313.
|
25 |
Neumair S C, Perfler L, Huppertz H. Synthesis and characterization of the manganese borate α-MnB2O4 [J]. Zeitschrift Für Naturforschung B, 2011, 66: 882-888.
|
26 |
Jia Y Z, Gao S Y, Xia S P, et al. FT-IR spectroscopy of supersaturated aqueous solutions of magnesium borate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 56(7): 1291-1297.
|
27 |
Cao R R, Li L X, Zhang P Y. Macroporous MnO2-based aerogel crosslinked with cellulose nanofibers for efficient ozone removal under humid condition[J]. Journal of Hazardous Materials, 2021, 407: 124793.
|
28 |
Cao Y H, Zheng Q, Rao Z Q, et al. InP quantum dots on g-C3N4 nanosheets to promote molecular oxygen activation under visible light[J]. Chinese Chemical Letters, 2020, 31(10): 2689-2692.
|
29 |
Liu Z K, Yan B, Meng S Y, et al. Plasma tuning local environment of hexagonal boron nitride for oxidative dehydrogenation of propane[J]. Angewandte Chemie-International Edition, 2021, 60(36): 19691-19695.
|
30 |
Jiang L S, Xie Y, He F, et al. Facile synthesis of GO as middle carrier modified flower-like BiOBr and C3N4 nanosheets for simultaneous treatment of chromium (Ⅵ) and tetracycline[J]. Chinese Chemical Letters, 2021, 32(7): 2187-2191.
|
31 |
Geng Z B, Wang Y X, Liu J H, et al. δ-MnO2-Mn3O4 nanocomposite for photochemical water oxidation: active structure stabilized in the interface[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27825-27831.
|
32 |
Sainsbury T, Satti A, May P, et al. Oxygen radical functionalization of boron nitride nanosheets[J]. Journal of the American Chemical Society, 2012, 134(45): 18758-18771.
|
33 |
Chen X, Zhao Z L, Liu S, et al. Ce-Fe-Mn ternary mixed-oxide catalysts for catalytic decomposition of ozone at ambient temperatures[J]. Journal of Rare Earths, 2020, 38(2): 175-181.
|
34 |
Zhang X D, Bi F K, Zhu Z Q, et al. The promoting effect of H2O on rod-like MnCeO x derived from MOFs for toluene oxidation: a combined experimental and theoretical investigation[J]. Applied Catalysis B: Environmental, 2021, 297: 120393.
|
35 |
Tao L G, Zhang Z Q, Chen P J, et al. Thin-felt Al-fiber-structured Pd-Co-MnO x /Al2O3 catalyst with high moisture resistance for high-throughput O3 decomposition[J]. Applied Surface Science, 2019, 481: 802-810.
|
36 |
Zhu G X, Zhu J G, Jiang W J, et al. Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination[J]. Applied Catalysis B: Environmental, 2017, 209: 729-737.
|