化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3193-3201.doi: 10.11949/0438-1157.20220240

• 表面与界面工程 • 上一篇    下一篇

Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究

王姝焱1,2(),张瑞阳2(),刘润2,刘凯2,周莹1,2()   

  1. 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
    2.西南石油大学新能源与材料学院,四川 成都 610500
  • 收稿日期:2022-02-24 修回日期:2022-05-05 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 张瑞阳,周莹 E-mail:wangsy3102@163.com;ryzhang@swpu.edu.cn;yzhou@swpu.edu.cn
  • 作者简介:王姝焱(1997—),女,硕士研究生,wangsy3102@163.com
  • 基金资助:
    四川省重大科技专项(2020ZDZX0008);西南石油大学“启航计划”项目(2021QHZ015)

Interfacial structure regulation of Mn(BO2)2/BNO to enhance catalytic ozone decomposition performance

Shuyan WANG1,2(),Ruiyang ZHANG2(),Run LIU2,Kai LIU2,Ying ZHOU1,2()   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China
    2.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
  • Received:2022-02-24 Revised:2022-05-05 Published:2022-07-05 Online:2022-08-01
  • Contact: Ruiyang ZHANG,Ying ZHOU E-mail:wangsy3102@163.com;ryzhang@swpu.edu.cn;yzhou@swpu.edu.cn

摘要:

近年来,近地面臭氧已成为我国仅次于PM2.5的大气污染物。催化臭氧分解技术具有条件温和、绿色环保的优点,被认为是极具潜力的臭氧治理技术。然而,水对催化剂的毒害作用是制约催化臭氧分解技术实际应用的重要问题之一。基于原位生长策略,制备了新型偏硼酸锰/氧掺杂氮化硼[Mn(BO2)2/BNO]臭氧分解催化剂。Mn(BO2)2与BNO界面之间强烈的相互作用诱导电子定向转移至Mn(BO2)2,不仅促进了臭氧的分解,而且抑制了水的吸附,避免了水对活性位点的毒害作用。催化活性测试表明,10%Mn(BO2)2负载BNO样品在60%湿度下20 min内表现出最高的臭氧分解性能(92%)。这为获得优异性能的臭氧分解催化材料提供了新的设计思路。

关键词: 偏硼酸锰/氧掺杂氮化硼, 界面, 臭氧分解, 催化作用, 抗湿性能, 电子转移, 复合材料

Abstract:

Nowadays, ground-level ozone has emerged as a strong candidate pollutant for PM2.5. Catalytic ozone decomposition is widely considered to be the most promising method to remove ozone. However, its practical application is severely restricted by the poor moisture resistance of the catalyst. In this paper, a novel manganese borate/oxygen-doped boron nitride [Mn(BO2)2/BNO] composite was successfully obtained based on in situ growth strategy. The strong interfacial interaction between the two components induces electron directional transfer from BNO to Mn(BO2)2, which not only promotes the decomposition of ozone, but also reduces the water adsorption capacity to avoid the poison of active sites by water molecules. Ozone decomposition performance test shows that 10% Mn/BNO [10% molar ratio of Mn(BO2)2 loaded on BNO] exhibits the best ozone removal performance of 92% at a relative humidity of 60% after 20 min. This provides a new design idea for obtaining ozonolysis catalytic materials with excellent performance.

Key words: Mn(BO2)2/BNO, interface, ozone decomposition, catalysis, water-resistance, electron transfer, composites

中图分类号: 

  • TB 333

图1

样品的臭氧去除性能"

图2

样品的XRD谱图"

图3

样品的SEM、TEM和HRTEM谱图"

图4

样品的FT-IR图和XPS图"

图5

样品的拉曼光谱图"

图6

BNO、3%Mn/BNO和10%Mn/BNO的氮气等温吸脱附曲线和孔径分布曲线"

图7

Mn(BO2)2和 BNO的结构以及H2O和O3在材料表面上的吸附模拟情况"

图8

BNO和10%Mn/BNO的H2O-TPD图"

图9

10%Mn/BNO的臭氧分解路径"

1 Lu X, Ye X P, Zhou M, et al. The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China[J]. Nature Communications, 2021, 12: 5021.
2 邱晶, 赵明, 王健礼, 等. 地表臭氧分解用氧化锰研究进展[J]. 材料导报, 2021, 35(21): 21050-21057.
Qiu J, Zhao M, Wang J L, et al. Research progress of manganese dioxide catalyst for ozone decomposition[J]. Materials Reports, 2021, 35(21): 21050-21057.
3 Lu X, Zhang L, Wang X L, et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013[J]. Environmental Science & Technology Letters, 2020,7(4): 240-247.
4 Yang S, Zhu Z X, Wei F, et al. Carbon nanotubes/activated carbon fiber based air filter media for simultaneous removal of particulate matter and ozone[J]. Building and Environment, 2017, 125: 60-66.
5 Seltzer K M, Shindell D T, Malley C S. Measurement-based assessment of health burdens from long-term ozone exposure in the United States, Europe, and China[J]. Environmental Research Letters, 2018, 13(10): 104018.
6 张瑞阳, 王姝焱, 黎邦鑫, 等. 气相臭氧分解催化材料的研究进展[J]. 材料导报, 2021, 35(21): 21037-21049.
Zhang R Y, Wang S Y, Li B X, et al. Research progress of gaseous ozone decomposition catalysts[J]. Materials Reports, 2021, 35(21): 21037-21049.
7 Shao X F, Li X T, Ma J Z, et al. Terminal hydroxyl groups on Al2O3 supports influence the valence state and dispersity of Ag nanoparticles: implications for ozone decomposition[J]. ACS Omega, 2021, 6(16): 10715-10722.
8 Li X T, Ma J Z, He H. Tuning the chemical state of silver on Ag-Mn catalysts to enhance the ozone decomposition performance[J]. Environmental Science & Technology, 2020, 54(18): 11566-11575.
9 Yang L, Ma J Z, Li X T, et al. Improving the catalytic performance of ozone decomposition over Pd-Ce-OMS-2 catalysts under harsh conditions[J]. Catalysis Science & Technology, 2020, 10(22): 7671-7680.
10 Ji J, Yu Y, Cao S, et al. Enhanced activity and water tolerance promoted by Ce on MnO/ZSM-5 for ozone decomposition[J]. Chemosphere, 2021, 280: 130664.
11 黎邦鑫, 张骞, 肖杰, 等. Fe增强Ni2(CO3)(OH)2臭氧分解抗湿性与催化性能[J]. 无机材料学报, 2022, 37(1): 45-50.
Li B X, Zhang Q, Xiao J, et al. Iron-doping enhanced basic nickel carbonate for moisture resistance and catalytic performance of ozone decomposition[J]. Journal of Inorganic Materials, 2022, 37(1): 45-50.
12 Sun Z B, Si Y N, Zhao S N, et al. Ozone decomposition by a manganese-organic framework over the entire humidity range[J]. Journal of the American Chemical Society, 2021, 143(13): 5150-5157.
13 Liang X S, Wang L S, Wen T C, et al. Mesoporous poorly crystalline α-Fe2O3 with abundant oxygen vacancies and acid sites for ozone decomposition[J]. Science of the Total Environment, 2022, 804: 150161.
14 Gong S Y, Chen J Y, Wu X F, et al. In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition[J]. Catalysis Communications, 2018, 106: 25-29.
15 Rahimi M G, Wang A Q, Ma G J, et al. A one-pot synthesis of a monolithic Cu2O/Cu catalyst for efficient ozone decomposition[J]. RSC Advances, 2020, 10(67): 40916-40922.
16 Wei L L, Chen H X, Wei Y, et al. Ce-promoted Mn/ZSM-5 catalysts for highly efficient decomposition of ozone[J]. Journal of Environmental Sciences, 2021, 103: 219-228.
17 Zhu G X, Zhu W, Lou Y, et al. Encapsulate α-MnO2 nanofiber within graphene layer to tune surface electronic structure for efficient ozone decomposition[J]. Nature Communications, 2021, 12: 4152.
18 Gao L J, Fu Q, Wei M M, et al. Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells[J]. ACS Catalysis, 2016, 6(10): 6814-6822.
19 Zheng Q, Cao Y H, Huang N J, et al. Selective exposure of BiOI oxygen-rich {110} facet induced by BN nanosheets for enhanced photocatalytic oxidation performance[J]. Acta Physico-Chimica Sinica, 2021, 37(8): 2009063.
20 Cao Y H, Zhang R Y, Zheng Q, et al. Dual functions of O-atoms in the g-C3N4/BO0.2N0.8 interface: oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic molecular oxygen activation[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 34432-34440.
21 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review. B, Condensed Matter, 1996, 54(16): 11169-11186.
22 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
23 Cao Y H, Zhang R Y, Zhou T L, et al. B—O bonds in ultrathin boron nitride nanosheets to promote photocatalytic carbon dioxide conversion[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9935-9943.
24 何忠义, 贾广跃, 张萌萌, 等. 纳米六方氮化硼负载离子液体润滑添加剂的摩擦学特性[J]. 化工学报, 2020, 71(9): 4303-4313.
He Z Y, Jia G Y, Zhang M M, et al. Tribological performance of hexagonal boron nitride supported ionic liquid lubricant additives[J]. CIESC Journal, 2020, 71(9): 4303-4313.
25 Neumair S C, Perfler L, Huppertz H. Synthesis and characterization of the manganese borate α-MnB2O4 [J]. Zeitschrift Für Naturforschung B, 2011, 66: 882-888.
26 Jia Y Z, Gao S Y, Xia S P, et al. FT-IR spectroscopy of supersaturated aqueous solutions of magnesium borate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 56(7): 1291-1297.
27 Cao R R, Li L X, Zhang P Y. Macroporous MnO2-based aerogel crosslinked with cellulose nanofibers for efficient ozone removal under humid condition[J]. Journal of Hazardous Materials, 2021, 407: 124793.
28 Cao Y H, Zheng Q, Rao Z Q, et al. InP quantum dots on g-C3N4 nanosheets to promote molecular oxygen activation under visible light[J]. Chinese Chemical Letters, 2020, 31(10): 2689-2692.
29 Liu Z K, Yan B, Meng S Y, et al. Plasma tuning local environment of hexagonal boron nitride for oxidative dehydrogenation of propane[J]. Angewandte Chemie-International Edition, 2021, 60(36): 19691-19695.
30 Jiang L S, Xie Y, He F, et al. Facile synthesis of GO as middle carrier modified flower-like BiOBr and C3N4 nanosheets for simultaneous treatment of chromium (Ⅵ) and tetracycline[J]. Chinese Chemical Letters, 2021, 32(7): 2187-2191.
31 Geng Z B, Wang Y X, Liu J H, et al. δ-MnO2-Mn3O4 nanocomposite for photochemical water oxidation: active structure stabilized in the interface[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27825-27831.
32 Sainsbury T, Satti A, May P, et al. Oxygen radical functionalization of boron nitride nanosheets[J]. Journal of the American Chemical Society, 2012, 134(45): 18758-18771.
33 Chen X, Zhao Z L, Liu S, et al. Ce-Fe-Mn ternary mixed-oxide catalysts for catalytic decomposition of ozone at ambient temperatures[J]. Journal of Rare Earths, 2020, 38(2): 175-181.
34 Zhang X D, Bi F K, Zhu Z Q, et al. The promoting effect of H2O on rod-like MnCeO x derived from MOFs for toluene oxidation: a combined experimental and theoretical investigation[J]. Applied Catalysis B: Environmental, 2021, 297: 120393.
35 Tao L G, Zhang Z Q, Chen P J, et al. Thin-felt Al-fiber-structured Pd-Co-MnO x /Al2O3 catalyst with high moisture resistance for high-throughput O3 decomposition[J]. Applied Surface Science, 2019, 481: 802-810.
36 Zhu G X, Zhu J G, Jiang W J, et al. Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination[J]. Applied Catalysis B: Environmental, 2017, 209: 729-737.
[1] 李雯, 兰忠, 强伟丽, 任文芝, 杜宾港, 马学虎. 蒸汽冷凝近壁过渡区团簇演化特性[J]. 化工学报, 2022, 73(7): 2865-2873.
[2] 黄仕元, 邓简, 袁瀚钦, 王国华, 吴兴良. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056.
[3] 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286.
[4] 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250.
[5] 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773.
[6] 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884.
[7] 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551.
[8] 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369.
[9] 李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278.
[10] 韩雪, 高生旺, 王国英, 夏训峰. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753.
[11] 胡华坤, 薛文东, 霍思达, 李勇, 蒋朋. 锂离子电池电解液SEI成膜添加剂的研究进展[J]. 化工学报, 2022, 73(4): 1436-1454.
[12] 李春晖, 何辉, 何明键, 张萌, 高杨, 矫彩山. 离子液体萃取硝酸中Ce(Ⅳ)的动力学研究[J]. 化工学报, 2022, 73(4): 1606-1614.
[13] 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825.
[14] 杨振, 姚元鹏, 李昀, 吴慧英. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101.
[15] 兰文杰, 胡晓洁, 蔡迪宗. 界面探针法测量液滴与固体壁面间相互作用力[J]. 化工学报, 2022, 73(3): 1119-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!