化工学报 ›› 2025, Vol. 76 ›› Issue (5): 2158-2168.DOI: 10.11949/0438-1157.20241180
杨紫博1(
), 王有发2, 岳寒松2, 远双杰3, 耿付江1(
), 李晴晴1, 奥德4, 李斌1, 叶茂4, 顾振杰4, 乔志华4(
)
收稿日期:2024-10-24
修回日期:2024-12-16
出版日期:2025-05-25
发布日期:2025-06-13
通讯作者:
耿付江,乔志华
作者简介:杨紫博(1991—),男,博士,教授,yangzibo0125@163.com
基金资助:
Zibo YANG1(
), Youfa WANG2, Hansong YUE2, Shuangjie YUAN3, Fujiang GENG1(
), Qingqing LI1, De AO4, Bin LI1, Mao YE4, Zhenjie GU4, Zhihua QIAO4(
)
Received:2024-10-24
Revised:2024-12-16
Online:2025-05-25
Published:2025-06-13
Contact:
Fujiang GENG, Zhihua QIAO
摘要:
近年来,由金属-有机框架(metal-organic frameworks, MOFs)材料熔融-淬火得到的MOF玻璃引起了众多研究学者的关注。经过熔融-淬火处理,MOF晶体由长程有序的晶态转变为短程有序、长程无序的非晶玻璃态。在这一转化过程中,MOF玻璃有效地消除了非选择性的晶界,确保了材料的均匀性和一致性。MOF玻璃优异的可加工性和成型性,使其能够方便地制备成各种形状和尺寸的膜材料。MOF玻璃永久且可进入的孔结构,赋予其选择性吸附不同类型气体的能力。基于此,MOF玻璃有望成为高性能分离膜的候选材料,推动相关研究和应用的不断发展。本文综述了用于气体分离的MOF玻璃膜的熔融机理、分类和最新研究进展。此外,还讨论了膜生产过程中面临的挑战,并提出了未来可能的研究方向。
中图分类号:
杨紫博, 王有发, 岳寒松, 远双杰, 耿付江, 李晴晴, 奥德, 李斌, 叶茂, 顾振杰, 乔志华. MOF玻璃基气体分离膜的研究进展[J]. 化工学报, 2025, 76(5): 2158-2168.
Zibo YANG, Youfa WANG, Hansong YUE, Shuangjie YUAN, Fujiang GENG, Qingqing LI, De AO, Bin LI, Mao YE, Zhenjie GU, Zhihua QIAO. Recent progress of MOF glasses based gas separation membrane[J]. CIESC Journal, 2025, 76(5): 2158-2168.
图4 (a) ZIF-62玻璃膜的制备流程; (b) ZIF-62玻璃膜的气体分离性能及理想选择性[60][1 GPU=10-6 cm3/(cm2·s·cmHg),1 cmHg=1333.22 Pa]
Fig.4 (a) Preparation process of ZIF-62 glass membrane; (b) Gas separation performance and ideal selectivity of ZIF-62 glass membrane[60]
图5 (a)热压法制备玻璃膜流程; (b)膜分离性能[61][1 Barrer=10-3 cm3·cm/(cm2·s·cmHg)]
Fig.5 (a) Process diagram for preparing glass membrane by hot-pressing method; (b) Membrane separation performance[61]
图6 (a) ZIF-62玻璃泡沫膜的制备流程示意图;(b) ZIF-62玻璃泡沫膜的分离性能及(c)性能对比[62]
Fig.6 (a) Schematic diagram of preparation process of ZIF-62 glass foam membrane; (b) Separation performance of ZIF-62 glass foam membrane and (c) performance comparison[62]
图8 ag[ZIF-62/ZIF-8]膜混合基质膜:(a) 制备流程;(b) 动态吸附实验;(c) C2H6分子跨膜模型;(d) 混合气性能及C2H6/C2H4选择性;(e) 纯气性能及C2H6/C2H4理想选择性[65]
Fig.8 ag[ZIF-62/ZIF-8] mixed matrix membrane: (a) preparation process; (b) dynamic adsorption test; (c) transport model of C2H6 molecule across the membrane; (d) mixed gas C2H6 permeance and C2H6/C2H4 selectivity; (e) pure gas C2H6 permeance and C2H6/C2H4 selectivity[65]
图9 MIL-53/ZIF-62玻璃复合材料:(a)复合材料的形成过程;(b)ZIF-62玻璃对MIL-53晶体孔径固定作用示意图;(c)MIL-53/ZIF-62玻璃复合材料的X射线衍射图;(d)MIL-53/ZIF-62玻璃复合材料的CO2吸附等温线[66-67](1 bar=105 Pa)
Fig.9 MIL-53/ZIF-62 glass composite material: (a) formation process of composite material; (b) schematic diagram of ZIF-62 glass fixing effect on MIL-53 crystal aperture; (c) X-ray diffraction pattern of MIL-53/ZIF-62 glass composite material; (d) CO2 adsorption isotherms of MIL-53/ZIF-62 glass composite material[66-67]
| 类别 | 膜名称 | 分离体系 | 通量 | 选择性 | 文献 |
|---|---|---|---|---|---|
| 纯MOF玻璃膜 | agfZIF-62 | CH4/N2 | 37000 GPU | 5.12 | [ |
| agTIF-4 | CO2/N2 | 3×10-9mol/(m2·s·Pa) | 27 | [ | |
| agZIF-62 | H2/CH4 | 70 GPU | 59 | [ | |
| 共混MOF玻璃膜 | ag[ZIF-62/ZIF-8] | C2H6/C2H4 | 41569 GPU | 7.16 | [ |
| ag[ZIF-62/ZIF-7] | H2/CH4 | 120.3 GPU | 98.6 | [ | |
| 晶体-MOF玻璃膜 | (agZIF-62)1-x (4A) x | CO2/CH4 | 33.3 GPU | 31.7 | [ |
| (agZIF-62)1-x (SSZ-13) x (agZIF-62)1-x (SSZ-13) x | 1,3-C4H6/i-C4H10 1,3-C4H6/i-C4H10 | 693.00 GPU 537.37 GPU | 11.94 8.98 | [ | |
| MIL-101/agZn-P-dmbIm | CO2/N2 | 68.5 GPU | 61 | [ |
表1 MOF玻璃基气体分离膜的分类
Table 1 Classification of MOF glass based gas separation membranes
| 类别 | 膜名称 | 分离体系 | 通量 | 选择性 | 文献 |
|---|---|---|---|---|---|
| 纯MOF玻璃膜 | agfZIF-62 | CH4/N2 | 37000 GPU | 5.12 | [ |
| agTIF-4 | CO2/N2 | 3×10-9mol/(m2·s·Pa) | 27 | [ | |
| agZIF-62 | H2/CH4 | 70 GPU | 59 | [ | |
| 共混MOF玻璃膜 | ag[ZIF-62/ZIF-8] | C2H6/C2H4 | 41569 GPU | 7.16 | [ |
| ag[ZIF-62/ZIF-7] | H2/CH4 | 120.3 GPU | 98.6 | [ | |
| 晶体-MOF玻璃膜 | (agZIF-62)1-x (4A) x | CO2/CH4 | 33.3 GPU | 31.7 | [ |
| (agZIF-62)1-x (SSZ-13) x (agZIF-62)1-x (SSZ-13) x | 1,3-C4H6/i-C4H10 1,3-C4H6/i-C4H10 | 693.00 GPU 537.37 GPU | 11.94 8.98 | [ | |
| MIL-101/agZn-P-dmbIm | CO2/N2 | 68.5 GPU | 61 | [ |
| 1 | Jia S Y, Ji D X, Wang L M, et al. Metal-organic framework membranes: advances, fabrication, and applications[J]. Small Structures, 2022, 3(4): 2100222. |
| 2 | Yang L Z, Yan D L, Wang D Y, et al. Adsorption site selective occupation strategy within a metal-organic framework for highly efficient sieving acetylene from carbon dioxide[J]. Angewandte Chemie International Edition, 2021, 60(9): 4570-4574. |
| 3 | Guo Z J, Liu Z Y, Zhang K, et al. Stable metal-organic frameworks based mixed matrix membranes for ethylbenzene/N2 separation[J]. Chemical Engineering Journal, 2021, 416: 129193. |
| 4 | Liu X P, Zhang L, Cui X W, et al. 2D material nanofiltration membranes: from fundamental understandings to rational design[J]. Advanced Science, 2021, 8(23): 2102493. |
| 5 | Cao Y H, Zhang K, Zhang C, et al. Carbon molecular sieve hollow fiber membranes derived from dip-coated precursor hollow fibers comprising nanoparticles[J]. Journal of Membrane Science, 2022, 649: 120279. |
| 6 | Gu Z J, Yang Z B, Sun Y X, et al. Large-area vacuum-treated ZIF-8 mixed-matrix membrane for highly efficient methane/nitrogen separation[J]. AIChE Journal, 2022, 68(9): e17749. |
| 7 | Goh S H, Lau H S, Yong W F. Metal-organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications[J]. Small, 2022, 18(20): 2107536. |
| 8 | Jia X M, Ao D, Yang Z B, et al. Condensability sieving porous coordination polymer membranes for preferential permeation of C1—C4 alkanes over H2 [J]. Advanced Membranes, 2022, 2: 100044. |
| 9 | Marshall C R, Dvorak J P, Twight L P, et al. Size-dependent properties of solution-processable conductive MOF nanocrystals[J]. Journal of the American Chemical Society, 2022, 144(13): 5784-5794. |
| 10 | Liu P, Zhao T X, Cai K X, et al. Rapid mechanochemical construction of HKUST-1 with enhancing water stability by hybrid ligands assembly strategy for efficient adsorption of SF6 [J]. Chemical Engineering Journal, 2022, 437: 135364. |
| 11 | Yu C J, Liang Y Y, Xue W J, et al. Polymer-supported ultra-thin ZIF-67 membrane through in situ interface self-repair[J]. Journal of Membrane Science, 2021, 625: 119139. |
| 12 | Li Y C, Su J, Zhao Y, et al. Dynamic bond-directed synthesis of stable mesoporous metal-organic frameworks under room temperature[J]. Journal of the American Chemical Society, 2023, 145(18): 10227-10235. |
| 13 | Yang Z B, Ao D, Guo X Y, et al. Preparation and characterization of small-size amorphous MOF mixed matrix membrane[J]. Separation and Purification Technology, 2021, 272: 118860. |
| 14 | Yang Z B, Li D D, Ao D, et al. Self-supported membranes fabricated by a polymer-hydrogen bonded network with a rigidified MOF framework[J]. Journal of Membrane Science, 2022, 650: 120427. |
| 15 | Wang Z Y, Qi J Y, Lu X H, et al. Epitaxially grown MOF membranes with photocatalytic bactericidal activity for biofouling mitigation in desalination[J]. Journal of Membrane Science, 2021, 630: 119327. |
| 16 | Wang H, Liu Y L, Li J. Designer metal-organic frameworks for size-exclusion-based hydrocarbon separations: progress and challenges[J]. Advanced Materials, 2020, 32(44): 2002603. |
| 17 | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
| 18 | Jun B M, Al-Hamadani Y A J, Son A, et al. Applications of metal-organic framework based membranes in water purification: a review[J]. Separation and Purification Technology, 2020, 247: 116947. |
| 19 | Shi D C, Yu X, Fan W D, et al. Polycrystalline zeolite and metal-organic framework membranes for molecular separations[J]. Coordination Chemistry Reviews, 2021, 437: 213794. |
| 20 | Wang Z G, Yuan J W, Li R H, et al. ZIF-301 MOF/6FDA-DAM polyimide mixed-matrix membranes for CO2/CH4 separation[J]. Separation and Purification Technology, 2021, 264: 118431. |
| 21 | Gu Z J, Yang Z B, Guo X Y, et al. Vacuum resistance treated ZIF-8 mixed matrix membrane for effective CH4/N2 separation[J]. Separation and Purification Technology, 2021, 272: 118845. |
| 22 | Gandara-Loe J, Bueno-Perez R, Missyul A, et al. Molecular sieving properties of nanoporous mixed-linker ZIF-62: associated structural changes upon gas adsorption application[J]. ACS Applied Nano Materials, 2021, 4(4): 3519-3528. |
| 23 | Bennett T D, Keen P D A, Tan D J, et al. Thermal amorphization of zeolitic imidazolate frameworks[J]. Angewandte Chemie, 2011, 123(13): 3123-3127. |
| 24 | Bennett T D, Tan J C, Yue Y Z, et al. Hybrid glasses from strong and fragile metal-organic framework liquids[J]. Nature Communications, 2015, 6: 8079. |
| 25 | Bennett T D, Yue Y Z, Li P, et al. Melt-quenched glasses of metal-organic frameworks[J]. Journal of the American Chemical Society, 2016, 138(10): 3484-3492. |
| 26 | Zhou C, Longley L, Krajnc A, et al. Metal-organic framework glasses with permanent accessible porosity[J]. Nature Communications, 2018, 9(1): 5042. |
| 27 | Yin Z, Zhang Y B, Yu H B, et al. How to create MOF glasses and take advantage of emerging opportunities[J]. Science Bulletin, 2020, 65(17): 1432-1435. |
| 28 | León-Alcaide L, Christensen R S, Keen D A, et al. Meltable, glass-forming, iron zeolitic imidazolate frameworks[J]. Journal of the American Chemical Society, 2023, 145(20): 11258-11264. |
| 29 | Kim M, Lee H S, Seo D H, et al. Melt-quenched carboxylate metal-organic framework glasses[J]. Nature Communications, 2024, 15(1): 1174. |
| 30 | Lin R J, Chai M, Zhou Y H, et al. Metal-organic framework glass composites[J]. Chemical Society Reviews, 2023, 52(13): 4149-4172. |
| 31 | Horike P S, Nagarkar D S S, Ogawa D T, et al. A new dimension for coordination polymers and metal-organic frameworks: towards functional glasses and liquids[J]. Angewandte Chemie International Edition, 2020, 59(17): 6652-6664. |
| 32 | Li S C, Limbach R, Longley L, et al. Mechanical properties and processing techniques of bulk metal-organic framework glasses[J]. Journal of the American Chemical Society, 2019, 141(2): 1027-1034. |
| 33 | Frentzel-Beyme L, Kloß M, Kolodzeiski P, et al. Meltable mixed-linker zeolitic imidazolate frameworks and their microporous glasses: from melting point engineering to selective hydrocarbon sorption[J]. Journal of the American Chemical Society, 2019, 141(31): 12362-12371. |
| 34 | Mubashir M, Dumée L F, Fong Y Y, et al. Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation[J]. Journal of Hazardous Materials, 2021, 415: 125639. |
| 35 | Qiao A, Bennett T D, Tao H Z, et al. A metal-organic framework with ultrahigh glass-forming ability[J]. Science Advances, 2018, 4(3): eaao6827. |
| 36 | Nagarkar S S, Tsujimoto M, Kitagawa S, et al. Modular self-assembly and dynamics in coordination star polymer glasses: new media for ion transport[J]. Chemistry of Materials, 2018, 30(23): 8555-8561. |
| 37 | Widmer R N, Lampronti G I, Anzellini S, et al. Pressure promoted low-temperature melting of metal-organic frameworks[J]. Nature Materials, 2019, 18(4): 370-376. |
| 38 | Bumstead A M, Ríos Gómez M L, Thorne M F, et al. Investigating the melting behaviour of polymorphic zeolitic imidazolate frameworks[J]. CrystEngComm, 2020, 22(21): 3627-3637. |
| 39 | Das C, Horike S. Crystal melting and vitrification behaviors of a three-dimensional nitrile-based metal-organic framework[J]. Faraday Discussions, 2021, 225: 403-413. |
| 40 | McHugh L N, Thorne M F, Chester A M, et al. Mechanochemically synthesised dicyanamide hybrid organic-inorganic perovskites, and their melt-quenched glasses[J]. Chemical Communications, 2022, 58(24): 3949-3952. |
| 41 | Shaw B K, Castillo-Blas C, Thorne M F, et al. Principles of melting in hybrid organic-inorganic perovskite and polymorphic ABX3 structures[J]. Chemical Science, 2022, 13(7): 2033-2042. |
| 42 | Zhao Y B, Lee S Y, Becknell N, et al. Nanoporous transparent MOF glasses with accessible internal surface[J]. Journal of the American Chemical Society, 2016, 138(34): 10818-10821. |
| 43 | Zhang Y M, Huang L P, Shi Y F. Molecular dynamics study on the viscosity of glass-forming systems near and below the glass transition temperature[J]. Journal of the American Ceramic Society, 2021, 104(12): 6227-6241. |
| 44 | Collins S M, Kepaptsoglou D M, Butler K T, et al. Subwavelength spatially resolved coordination chemistry of metal-organic framework glass blends[J]. Journal of the American Chemical Society, 2018, 140(51): 17862-17866. |
| 45 | Bennett T D, Horike S. Liquid, glass and amorphous solid states of coordination polymers and metal-organic frameworks[J]. Nature Reviews Materials, 2018, 3(11): 431-440. |
| 46 | Tao H Z, Bennett T D, Yue Y Z. Melt-quenched hybrid glasses from metal-organic frameworks[J]. Advanced Materials, 2017, 29(20): 1601705. |
| 47 | Xu W, Hanikel N, Lomachenko K A, et al. High-porosity metal-organic framework glasses[J]. Angewandte Chemie International Edition, 2023, 62(16): e202300003. |
| 48 | Ogawa T, Takahashi K, Nagarkar S S, et al. Coordination polymer glass from a protic ionic liquid: proton conductivity and mechanical properties as an electrolyte[J]. Chemical Science, 2020, 11(20): 5175-5181. |
| 49 | Longley L, Calahoo C, Southern T J F, et al. The reactivity of an inorganic glass melt with ZIF-8[J]. Dalton Transactions, 2021, 50(10): 3529-3535. |
| 50 | Stepniewska M, Martin B Ø, Zhou C, et al. Towards large-size bulk ZIF-62 glasses via optimizing the melting conditions[J]. Journal of Non-Crystalline Solids, 2020, 530: 119806. |
| 51 | Hou J W, Gómez M L R, Krajnc A, et al. Halogenated metal-organic framework glasses and liquids[J]. Journal of the American Chemical Society, 2020, 142(8): 3880-3890. |
| 52 | Ma N, Horike S. Metal-organic network-forming glasses[J]. Chemical Reviews, 2022, 122(3): 4163-4203. |
| 53 | Nagarkar S S, Kurasho H, Duong N T, et al. Crystal melting and glass formation in copper thiocyanate based coordination polymers[J]. Chemical Communications, 2019, 55(38): 5455-5458. |
| 54 | Wei Y S, Fan Z Y, Luo C, et al. Desolvation of metal complexes to construct metal-organic framework glasses[J]. Nature Synthesis, 2024, 3: 214-223. |
| 55 | Yu Y, Qiao A, Bumstead A M, et al. Impact of 1-methylimidazole on crystal formation, phase transitions, and glass formation in a zeolitic imidazolate framework[J]. Crystal Growth & Design, 2020, 20: 6528-6534. |
| 56 | Yin Z, Zhao Y B, Wan S, et al. Synergistic stimulation of metal-organic frameworks for stable super-cooled liquid and quenched glass[J]. Journal of the American Chemical Society, 2022, 144(29): 13021-13025. |
| 57 | Nozari V, Smirnova O, Tuffnell J M, et al. Low-temperature melting and glass formation of the zeolitic imidazolate frameworks ZIF-62 and ZIF-76 through ionic liquid incorporation[J]. Advanced Materials Technologies, 2022, 7(11): 2200343. |
| 58 | Ma C, Yang Z B, Guo X Y, et al. Size-reduced low-crystallinity ZIF-62 for the preparation of mixed-matrix membranes for CH4/N2 separation[J]. Journal of Membrane Science, 2022, 663: 121069. |
| 59 | Umeyama D, Horike S, Inukai M, et al. Inherent proton conduction in a 2D coordination framework[J]. Journal of the American Chemical Society, 2012, 134(30): 12780-12785. |
| 60 | Wang Y H, Jin D H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angewandte Chemie International Edition, 2020, 59(11): 4365-4369. |
| 61 | Li J, Wang J M, Li Q Q, et al. Coordination polymer glasses with lava and healing ability for high-performance gas sieving[J]. Angewandte Chemie International Edition, 2021, 60(39): 21304-21309. |
| 62 | Yang Z B, Belmabkhout Y, McHugh L N, et al. ZIF-62 glass foam self-supported membranes to address CH4/N2 separations[J]. Nature Materials, 2023, 22: 888-894. |
| 63 | Longley L, Collins S M, Zhou C, et al. Liquid phase blending of metal-organic frameworks[J]. Nature Communications, 2018, 9(1): 2135. |
| 64 | Longley L, Calahoo C, Limbach R, et al. Metal-organic framework and inorganic glass composites[J]. Nature Communications, 2020, 11(1): 5800. |
| 65 | Ao D, Yang Z B, Qiao Z H, et al. Metal-organic framework crystal-glass composite membranes with preferential permeation of ethane[J]. Angewandte Chemie International Edition, 2023, 62(28): e202304535. |
| 66 | Hou J W, Ashling C W, Collins S M, et al. Metal-organic framework crystal-glass composites[J]. Nature Communications, 2019, 10(1): 2580. |
| 67 | Ashling C W, Johnstone D N, Widmer R N, et al. Synthesis and properties of a compositional series of MIL-53(Al) metal-organic framework crystal-glass composites[J]. Journal of the American Chemical Society, 2019, 141(39): 15641-15648. |
| 68 | Ashling C W, Macreadie L K, Southern T J F, et al. Guest size limitation in metal-organic framework crystal-glass composites[J]. Journal of Materials Chemistry A, 2021, 9(13): 8386-8393. |
| 69 | Longley L, Collins S M, Li S C, et al. Flux melting of metal-organic frameworks[J]. Chemical Science, 2019, 10(12): 3592-3601. |
| 70 | Li S C, Yu S W, Collins S M, et al. A new route to porous metal-organic framework crystal-glass composites[J]. Chemical Science, 2020, 11(36): 9910-9918. |
| 71 | McHugh L N, Thorne M F, Robertson G, et al. Properties of single-component metal-organic framework crystal-glass composites[J]. Chemistry-A European Journal, 2022, 28(7): e202104026. |
| 72 | Nozari V, Calahoo C, Tuffnell J M, et al. Ionic liquid facilitated melting of the metal-organic framework ZIF-8[J]. Nature Communications, 2021, 12(1): 5703. |
| 73 | Ao D, Yang Z B, Chen A B, et al. Effective C4 separation by zeolite metal-organic framework composite membranes[J]. Angewandte Chemie International Edition, 2024, 63(21): e202401118. |
| 74 | Li N, Ma C, Wang Z Y, et al. Highly porous MOF integrated with coordination polymer glass membrane for efficient CO2/N2 separation[J]. Journal of Membrane Science, 2025, 715: 123453. |
| 75 | Xia H N, Jin H, Zhang Y T, et al. A long-lasting TIF-4 MOF glass membrane for selective CO2 separation[J]. Journal of Membrane Science, 2022, 655: 120611. |
| 76 | 叶茂, 奥德, 孙玉绣, 等. 新型自支撑ZIF玻璃膜的制备及气体分离性能[J]. 硅酸盐学报, 2024, 52(8): 2545-2552. |
| Ye M, Ao D, Sun Y X, et al. Preparation and performance of a novel self-supported ZIF glass membrane for gas separation[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2545-2552. | |
| 77 | Li D D, Yang Z B, Yang L X, et al. Self-supported flux melted glass membranes fabricated by melt quenching for gas separation[J]. Journal of Membrane Science, 2024, 695: 122492. |
| 78 | Li D D, Ye M, Ma C, et al. Preparation of a self-supported zeolite glass composite membrane for CO2/CH4 separation[J]. Smart Molecules, 2024, 2(3): e20240009. |
| [1] | 安昊天, 韩章烨, 陆慕瑶, 周阿武, 李建荣. 推进MOF产业化应用:宏量制备与成型[J]. 化工学报, 2025, 76(5): 2011-2025. |
| [2] | 张耀辉, 班宇杰, 杨维慎. 以蒸气加工法制备和修饰金属-有机框架膜[J]. 化工学报, 2025, 76(5): 2070-2086. |
| [3] | 刘增欣,王依军,郝春莲,刘秀萍. Zn/Cu单晶转换MOF材料的CO2/CH4分离性能研究[J]. 化工学报, 2021, 72(S1): 546-553. |
| [4] | 徐彦芹, 肖俪悦, 曹渊, 陈昌国, 王丹. 金属有机框架复合材料在超级电容器中的合成及应用研究[J]. 化工学报, 2020, 71(10): 4473-4490. |
| [5] | 曲云鹏, 张丙兴, 石金彪, 谭秀娘, 韩布兴, 杨冠英, 张建玲. 钛基金属-有机框架材料的改性及其催化性能研究[J]. 化工学报, 2020, 71(1): 283-289. |
| [6] | 张鹏,陈赞,吴洪,张润楠,杨磊鑫,游昕达,安珂,姜忠义. 石墨烯基CO2分离膜通道微环境调控研究进展[J]. 化工学报, 2020, 71(1): 54-67. |
| [7] | 葛亮,伍斌,王鑫,赵璋,徐铜文. MOFs分离膜在水系分离中的应用[J]. 化工学报, 2019, 70(10): 3748-3763. |
| [8] | 谢丹妍, 邢华斌, 张治国, 杨启炜, 杨亦文, 任其龙, 鲍宗必. 多孔氢键金属-有机框架材料对乙炔和二氧化碳的吸附分离[J]. 化工学报, 2017, 68(1): 154-162. |
| [9] | 张春芳,赖傲楠,白云翔,顾 瑾,孙余凭. EVA38/Tween20凝胶气体分离膜的制备及其性能[J]. 化工进展, 2013, 32(05): 996-1000. |
| [10] | 叶 宏,冯旭东,王 静,张晶晶,于 群. 聚氨酯渗透汽化膜的研究进展 [J]. CIESC Journal, 2010, 29(8): 1399-. |
| [11] | 沈江南,裘俊红,郑幸存,吴礼光,高从堦. 微乳液聚合在分离膜制备中的应用研究进展 [J]. CIESC Journal, 2008, 27(4): 515-. |
| [12] | 王金厢,蔡邦肖. 渗透汽化在酯水体系分离中的应用 [J]. CIESC Journal, 2006, 25(6): 608-. |
| [13] | 张子勇;吴新华 . 三甲基硅基甲基纤维素的合成及膜的富氧性能 [J]. CIESC Journal, 2006, 57(5): 1251-1254. |
| [14] | 张金利; 李韡; 王惠; 杨文莉; 朱丽. 大分子组装体作用下仿生膜的合成 [J]. CIESC Journal, 2001, 52(12): 1117-1119. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号