[1] |
ZHAO X, XING H, YANG Q, et al. Differential solubility of ethylene and acetylene in room-temperature ionic liquids:a theoretical study[J]. J. Phys. Chem. B, 2012, 116(13):3944-53.
|
[2] |
EGUCHI R, UCHIDA S, MIZUNO N. Inverse and high CO2/C2H2 sorption selectivity in flexible organic-inorganic ionic crystals[J]. Angewandte Chemie International Edition, 2012, 51(7):1635-1639.
|
[3] |
LI P, HE Y, ZHAO Y, et al. A rod -packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature[J]. Angewandte Chemie International Edition, 2015, 54(2):574-577.
|
[4] |
RAO X, CAI J, YU J, et al. A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature[J]. Chemical Communications, 2013, 49(60):6719-6721.
|
[5] |
DUAN J, JIN W, KRISHNA R. Natural gas purification using a porous coordination polymer with water and chemical stability[J]. Inorganic Chemistry, 2015, 54(9):4279-4284.
|
[6] |
YOON J W, LEE J S, LEE S, et al. Adsorptive separation of acetylene from light hydrocarbons by mesoporous iron trimesate MIL-100(Fe)[J]. Chemistry-A European Journal, 2015, 21(50):18431-18438.
|
[7] |
CHANG G, LI B, WANG H, et al. Control of interpenetration in a microporous metal-organic framework for significantly enhanced C2H2/CO2 separation at room temperature[J]. Chemical Communications, 2016, 52(17):3494-3496.
|
[8] |
DAVIS M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891):813-821.
|
[9] |
ZHANG Z, ZHAO Y, GONG Q, et al. MOFs for CO2 capture and separation from flue gas mixtures:the effect of multifunctional sites on their adsorption capacity and selectivity[J]. Chemical Communications, 2013, 49(7):653-661.
|
[10] |
HE Y, ZHOU W, QIAN G, et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16):5657-5678.
|
[11] |
FURUKAWA H, CORDOWA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149):1230444.
|
[12] |
李亮莎, 王可可, 黄宏亮, 等. 高稳定铪金属-有机骨架材料的合成及二氧化碳捕获性能[J]. 化工学报, 2014, 65(5):1706-1715. LI L S, WANG K K, HUANG H L, et al. Synthesis of exceptional stable Hf-based metal-organic frameworks:characterization, stability and CO2 adsorption performance[J]. CIESC Journal, 2014, 65(5):1706-1715.
|
[13] |
LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1477-1504.
|
[14] |
CHUI S S Y, LO S M F, CHARMANT J P H, et al. A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405):1148-1150.
|
[15] |
乔智威, 杨仁党, 王海辉, 等. 面向生物甲烷分离的不同金属配位金属-有机骨架材料的分子设计[J]. 化工学报, 2014, 65(5):1729-1735. QIAO Z W, YANG R D, WANG H H, et al. Molecular design of metal-organic frameworks with different metal ligands for bio-methane separation[J]. CIESC Journal, 2014, 65(5):1729-1735.
|
[16] |
HE Y, KRISHNA R, CHEN B. Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons[J]. Energy & Environmental Science, 2012, 5(10):9107-9120.
|
[17] |
杨宵, 刘晶, 胡建波. 氢气在共价有机骨架材料中的吸附机理[J]. 化工学报, 2015, 66(7):2540-2546. YANG X, LIU J, HU J B. Adsorption mechanism of H2 on covalent organic frameworks[J]. CIESC Journal, 2015, 66(7):2540-2546.
|
[18] |
MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51):17998-17999.
|
[19] |
MATSUDA R, KITAULA R, KITAGAWA S, et al. Highly controlled acetylene accommodation in a metal-organic microporous material[J]. Nature, 2005, 436(7048):238-241.
|
[20] |
TIAN J, THALLAPALLY P K, MCGRAIL B P. Porous organic molecular materials[J]. CrystEngComm, 2012, 14(6):1909-1919.
|
[21] |
HISAKI I, NAKAGAWA S, TOHNAI N, et al. A C3-symmetric macrocycle-based, hydrogen-bonded, multiporous hexagonal network as a motif of porous molecular crystals[J]. Angewandte Chemie International Edition, 2015, 54(10):3008-3012.
|
[22] |
LI P, HE Y, ZHAO Y, et al. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature[J]. Angewandte Chemie International Edition, 2015, 54(2):574-577.
|
[23] |
LI P, HE Y, ARMAN H D, et al. A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C2H4/C2H6[J]. Chemical Communications, 2014, 50(86):13081-13084.
|
[24] |
LUO X Z, JIA X J, DENG J H, et al. A microporous hydrogen-bonded organic framework:exceptional stability and highly selective adsorption of gas and liquid[J]. Journal of the American Chemical Society, 2013, 135(32):11684-11687.
|
[25] |
WANG H, LI B, WU H, et al. A flexible microporous hydrogen-bonded organic framework for gas sorption and separation[J]. Journal of the American Chemical Society, 2015, 137(31):9963-9970.
|
[26] |
YANG W, LI B, WANG H, et al. A microporous porphyrin-based hydrogen-bonded organic framework for gas separation[J]. Crystal Growth & Design, 2015, 15(4):2000-2004.
|
[27] |
CHEN T H, POPOV I, KAVEEVIVITCHAI W, et al. Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs[J]. Nature Communications, 2014, 5(1):5131.
|
[28] |
ZENTNER C A, LAI H W H, GREENFIELD J T, et al. High surface area and Z' in a thermally stable 8-fold polycatenated hydrogen-bonded framework[J]. Chemical Communications, 2015, 51(58):11642-11645.
|
[29] |
ZHOU D D, XU Y T, LIN R B, et al. High-symmetry hydrogen-bonded organic frameworks:air separation and crystal-to-crystal structural transformation[J]. Chemical Communications, 2016, 52(28):4991-4994.
|
[30] |
THOMAS-GIPSON J, BEOBIDE G, CASTILLO O, et al. Paddle-wheel shaped copper (Ⅱ)-adenine discrete entities as supramolecular building blocks to afford porous supramolecular metal-organic frameworks (SMOFs)[J]. Crystal Growth & Design, 2014, 14(8):4019-4029.
|
[31] |
THOMAS-GIPSON J, BEOBIDE G, CASTILLO O, et al. Porous supramolecular compound based on paddle-wheel shaped copper (Ⅱ)-adenine dinuclear entities[J]. CrystEngComm, 2011, 13(10):3301-3305.
|
[32] |
NUGENT P S, RHODUS V L, PHAM T, et al. A robust molecular porous material with high CO2 uptake and selectivity[J]. Journal of the American Chemical Society, 2013, 135(30):10950-10953.
|
[33] |
LEE J M, PALGUNADI J, KiIM J H, et al. Selective removal of acetylenes from olefin mixtures through specific physicochemical interactions of ionic liquids with acetylenes[J]. Physical Chemistry Chemical Physics, 2010, 12(8):1812-1816.
|
[34] |
ZHAO X, XING H, YANG Q, et al. Differential solubility of ethylene and acetylene in room-temperature ionic liquids:a theoretical study[J]. The Journal of Physical Chemistry B, 2012, 116(13):3944-3953.
|
[35] |
PALGUNADI J, HONG S Y, LEE J K, et al. Correlation between hydrogen bond basicity and acetylene solubility in room temperature ionic liquids[J]. The Journal of Physical Chemistry B, 2011, 115(5):1067-1074.
|
[36] |
BURD S D, MA S, PERMAN J A, et al. Highly selective carbon dioxide uptake by[Cu(bpy-n)2(SiF6)](bpy-1=4,4'-Bipyridine; bpy-2=1,2-bis (4-pyridyl) ethene)[J]. Journal of the American Chemical Society, 2012, 134(8):3663-3666.
|
[37] |
MOHAMED M H, ELSAIDI S K, WOJTAS L, et al. Highly selective CO2 uptake in uninodal 6-connected "mmo" nets based upon MO42-(M=Cr, Mo) pillars[J]. Journal of the American Chemical Society, 2012, 134(48):19556-19559.
|
[38] |
XU H, HE Y, ZHANG Z, et al. A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature[J]. Journal of Materials Chemistry A, 2013, 49(60):77-81.
|
[39] |
HE Y, XIANG S, ZHANG Z, et al. A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas[J]. Chemical Communications, 2012, 48(88):10856-10858.
|
[40] |
XIANG S, ZHOU W, GALLENGOS J M, et al. Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites[J]. Journal of the American Chemical Society, 2009, 131(34):12415-12419.
|
[41] |
SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2011, 112(2):724-781.
|
[42] |
CUI XL, CHEN K J, XING H B, et al. Pore chemistry and size control in by brid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353(6295):141-144.
|
[43] |
LI P, HE Y, GUANG J, et al. A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols[J]. Journal of the American Chemical Society, 2014, 136(2):547-549.
|
[44] |
LU J, PEREZ-KRAP C, SUYETIN M, et al. A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity[J]. Journal of the American Chemical Society, 2014, 136(37):12828-12831.
|
[45] |
ELSAIDI S K, MOHAMED M H, SCHAEL H T, et al. Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas[J]. Chemical Communications, 2015, 51(94):15530-15533.
|