化工学报 ›› 2025, Vol. 76 ›› Issue (2): 532-542.DOI: 10.11949/0438-1157.20241277
• 综述与专论 • 上一篇
郭琛龙1,2(), 彭正奇1,2, 姜冰雪1,2, 吴正凯1,2, 王德良2(
), 王青月2(
), 郑杰元2, Ho Lim Khak2, 史胜斌2, 杨轩1,2, 刘平伟1,2, 王文俊1,2(
)
收稿日期:
2024-11-11
修回日期:
2024-12-13
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
王德良,王青月,王文俊
作者简介:
郭琛龙(1998—),男,硕士研究生,22328116@zju.edu.cn
基金资助:
Chenlong GUO1,2(), Zhengqi PENG1,2, Bingxue JIANG1,2, Zhengkai WU1,2, Deliang WANG2(
), Qingyue WANG2(
), Jieyuan ZHENG2, Lim Khak Ho2, Shengbin SHI2, Xuan YANG1,2, Pingwei LIU1,2, Wenjun WANG1,2(
)
Received:
2024-11-11
Revised:
2024-12-13
Online:
2025-03-25
Published:
2025-03-10
Contact:
Deliang WANG, Qingyue WANG, Wenjun WANG
摘要:
回收并提升退役聚对苯二甲酸乙二醇酯(PET)的应用价值,对于减少资源浪费和环境污染具有重要意义。综述了退役PET的回收处理技术及高值化再利用的研究进展,概述了包括填埋、焚烧、热解、生物酶降解在内的回收方法,并深入探讨了化学回收及光、电、氢解等催化回收技术,重点聚焦了退役PET向再生PET、共聚酯、小分子化学品、复合材料及其他材料等高值产品的转化路径。通过采用解聚-再聚合一体化工艺,可有效减少退役PET解聚过程中的产物分离步骤,在降低成本的同时,实现了产品升级。随着退役PET分拣除杂等预处理与解聚效率的提升、闭环回收系统的构建、增效添加剂的研发及高效生物解聚技术的开拓,将极大推动退役PET高值化再利用的工业化进程。
中图分类号:
郭琛龙, 彭正奇, 姜冰雪, 吴正凯, 王德良, 王青月, 郑杰元, Ho Lim Khak, 史胜斌, 杨轩, 刘平伟, 王文俊. 退役PET高值回用的研究进展[J]. 化工学报, 2025, 76(2): 532-542.
Chenlong GUO, Zhengqi PENG, Bingxue JIANG, Zhengkai WU, Deliang WANG, Qingyue WANG, Jieyuan ZHENG, Lim Khak Ho, Shengbin SHI, Xuan YANG, Pingwei LIU, Wenjun WANG. Advances in upcycling of post-consumer PET[J]. CIESC Journal, 2025, 76(2): 532-542.
回收方法 | 催化剂 | 主产物 | 文献 |
---|---|---|---|
光催化 | CdS/CdO x | 甲酸、乙酸酯、乳酸、H2 | [ |
Pt/g-C3N4 | 甲酸、H2 | [ | |
CN x /Ni2P | 醋酸、甲酸、乙醇酸、乙二醛、H2 | [ | |
d-NiPS3/CdS | 甲酸酯、乙酸、乙醇酸、H2 | [ | |
MoS2/Cd x Zn1-x S | 甲酸盐、乙醇酸盐甲基乙二醛、H2 | [ | |
碳化量子点/g-C3N4 | 乙醇酸、乙醇醛、乙醇、H2 | [ | |
g-C3N4-CNTs-NiMo | 乙二醛、乙醇酸盐、H2 | [ | |
电催化 | AuNi(OH)2 | 乙醇酸、H2 | [ |
CoNi x P/NF | 二甲酸钾、TPA、H2 | [ | |
Pt1/Ni(OH)2 | 二甲酸钾、TPA、H2 | [ | |
Pd67Ag33合金气凝胶 | 甲酸、乙醇酸、H2 | [ | |
NiCu/NF | 甲酸盐、H2 | [ | |
NiCo2O4、SnO2 | 甲酸、H2 | [ | |
氢解 | Ru-PNN配合物 | TPA、EG | [ |
膦-二胺配体的Ru配合物 | TPA、EG | [ | |
基于氮杂环卡宾的钳形锰催化剂 | TPA、EG | [ | |
CoMo@NC | TPA、EG | [ |
表1 退役PET高值回收制备小分子化学品的研究进展
Table 1 Research progress in upcycling of post-consumer PET to produce high-value small molecule compounds
回收方法 | 催化剂 | 主产物 | 文献 |
---|---|---|---|
光催化 | CdS/CdO x | 甲酸、乙酸酯、乳酸、H2 | [ |
Pt/g-C3N4 | 甲酸、H2 | [ | |
CN x /Ni2P | 醋酸、甲酸、乙醇酸、乙二醛、H2 | [ | |
d-NiPS3/CdS | 甲酸酯、乙酸、乙醇酸、H2 | [ | |
MoS2/Cd x Zn1-x S | 甲酸盐、乙醇酸盐甲基乙二醛、H2 | [ | |
碳化量子点/g-C3N4 | 乙醇酸、乙醇醛、乙醇、H2 | [ | |
g-C3N4-CNTs-NiMo | 乙二醛、乙醇酸盐、H2 | [ | |
电催化 | AuNi(OH)2 | 乙醇酸、H2 | [ |
CoNi x P/NF | 二甲酸钾、TPA、H2 | [ | |
Pt1/Ni(OH)2 | 二甲酸钾、TPA、H2 | [ | |
Pd67Ag33合金气凝胶 | 甲酸、乙醇酸、H2 | [ | |
NiCu/NF | 甲酸盐、H2 | [ | |
NiCo2O4、SnO2 | 甲酸、H2 | [ | |
氢解 | Ru-PNN配合物 | TPA、EG | [ |
膦-二胺配体的Ru配合物 | TPA、EG | [ | |
基于氮杂环卡宾的钳形锰催化剂 | TPA、EG | [ | |
CoMo@NC | TPA、EG | [ |
60 | Uekert T, Kuehnel M F, Wakerley D W, et al. Plastic waste as a feedstock for solar-driven H2 generation[J]. Energy & Environmental Science, 2018, 11(10): 2853-2857. |
61 | Li M, Zhang S B. Tandem chemical depolymerization and photoreforming of waste PET plastic to high-value-added chemicals[J]. ACS Catalysis, 2024, 14(5): 2949-2958. |
62 | Wang G H, Chen Z J, Wei W, et al. Electrocatalysis-driven sustainable plastic waste upcycling[J]. Electron, 2024, 2(2): e34. |
63 | Yan Y F, Zhou H, Xu S M, et al. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities[J]. Journal of the American Chemical Society, 2023, 145(11): 6144-6155. |
64 | Carta D, Cao G, D'Angeli C. Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis[J]. Environmental Science and Pollution Research, 2003, 10(6): 390-394. |
65 | Jiang X L, Chang Z L, Yang L, et al. Hydrogenation of waste PET degraded bis(2-hydroxyethyl)cyclohexane-1,4-dicarboxylate to 1,4-cyclohexanedimethanol over Cu-based catalysts[J]. Fuel, 2024, 363: 130944. |
66 | Uekert T, Kasap H, Reisner E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst[J]. Journal of the American Chemical Society, 2019, 141(38): 15201-15210. |
67 | Zhang S, Li H B, Wang L, et al. Boosted photoreforming of plastic waste via defect-rich NiPS3 nanosheets[J]. Journal of the American Chemical Society, 2023, 145(11): 6410-6419. |
68 | Du M M, Zhang Y, Kang S L, et al. Trash to treasure: photoreforming of plastic waste into commodity chemicals and hydrogen over MoS2-tipped CdS nanorods[J]. ACS Catalysis, 2022, 12(20): 12823-12832. |
69 | Han M, Zhu S J, Xia C L, et al. Photocatalytic upcycling of poly(ethylene terephthalate) plastic to high-value chemicals[J]. Applied Catalysis B: Environmental, 2022, 316: 121662. |
70 | Gong X Q, Tong F X, Ma F H, et al. Photoreforming of plastic waste poly(ethylene terephthalate) via in situ derived CN-CNTs-NiMo hybrids[J]. Applied Catalysis B: Environment and Energy, 2022, 307: 121143. |
71 | Zhou H, Ren Y, Li Z H, et al. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel[J]. Nature Communications, 2021, 12(1): 4679. |
72 | Song M W, Wu Y F, Zhao Z Y, et al. Corrosion engineering of part-per-million single atom Pt1/Ni(OH)2 electrocatalyst for PET upcycling at ampere-level current density[J]. Advanced Materials, 2024, 36(23): e2403234. |
73 | Chen J L, Zhang F Z, Kuang M, et al. Unveiling synergy of strain and ligand effects in metallic aerogel for electrocatalytic polyethylene terephthalate upcycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(17): e2318853121. |
74 | Kang H X, He D, Yan X X, et al. Cu promoted the dynamic evolution of Ni-based catalysts for polyethylene terephthalate plastic upcycling[J]. ACS Catalysis, 2024, 14(7): 5314-5325. |
75 | Wang J Y, Li X, Wang M L, et al. Electrocatalytic valorization of poly(ethylene terephthalate) plastic and CO2 for simultaneous production of formic acid[J]. ACS Catalysis, 2022, 12(11): 6722-6728. |
76 | Krall E M, Klein T W, Andersen R J, et al. Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by ruthenium(Ⅱ) PNN pincer complexes[J]. Chemical Communications, 2014, 50(38): 4884-4887. |
77 | Fuentes J A, Smith S M, Scharbert M T, et al. On the functional group tolerance of ester hydrogenation and polyester depolymerisation catalysed by ruthenium complexes of tridentate aminophosphine ligands[J]. Chemistry-A European Journal, 2015, 21(30): 10851-10860. |
78 | Wei Z Y, Li H X, Wang Y J, et al. A tailored versatile and efficient NHC-based NNC-pincer manganese catalyst for hydrogenation of polar unsaturated compounds[J]. Angewandte Chemie International Edition, 2023, 62(23): e202301042. |
79 | Wu P Y, Lu G P, Cai C. Cobalt-molybdenum synergistic catalysis for the hydrogenolysis of terephthalate-based polyesters[J]. Green Chemistry, 2021, 23(21): 8666-8672. |
80 | Zhang M H, Yu Y K, Yan B H, et al. Full valorisation of waste PET into dimethyl terephthalate and cyclic arylboronic esters[J]. Applied Catalysis B: Environment and Energy, 2024, 352: 124055. |
81 | Li Y W, Wang M, Liu X W, et al. Catalytic transformation of PET and CO2 into high-value chemicals[J]. Angewandte Chemie International Edition, 2022, 61(10): e202117205. |
82 | Velásquez E J, Garrido L, Guarda A, et al. Increasing the incorporation of recycled PET on polymeric blends through the reinforcement with commercial nanoclays[J]. Applied Clay Science, 2019, 180: 105185. |
83 | Belioka M P, Markozanne G, Chrissopoulou K, et al. Advanced plastic waste recycling—the effect of clay on the morphological and thermal behavior of recycled PET/PLA sustainable blends[J]. Polymers, 2023, 15(14): 3145. |
84 | Paszkiewicz S, Irska I, Piesowicz E. Environmentally friendly polymer blends based on post-consumer glycol-modified poly(ethylene terephthalate) (PET-G) foils and poly(ethylene 2,5-furanoate) (PEF): preparation and characterization[J]. Materials, 2020, 13(12): 2673. |
85 | Sangkhawasi M, Remsungnen T, Vangnai A S, et al. Prediction of the glass transition temperature in polyethylene terephthalate/polyethylene vanillate (PET/PEV) blends: a molecular dynamics study[J]. Polymers, 2022, 14(14): 2858. |
86 | 张丰. 基于聚丁二酸乙二醇酯预聚体的新型多嵌段共聚酯的合成、结构与性能研究[D]. 北京: 北京化工大学, 2023. |
Zhang F. Synthesis, structure and properties of novel multiblock copolyesters based on poly(ethylene succinate) prepolymer[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
87 | Li S Z, Wang W, Yu L, et al. Influence of different compatibilizers on the morphology and properties of PA6/PET/glass fiber composites[J]. Journal of Applied Polymer Science, 2018, 135(26): e46429. |
88 | Li S C, Lu L N, Zeng W. Thermostimulative shape-memory effect of reactive compatibilized high-density polyethylene/poly(ethylene terephthalate) blends by an ethylene-butyl acrylate-glycidyl methacrylate terpolymer[J]. Journal of Applied Polymer Science, 2009, 112(6): 3341-3346. |
89 | Tahmasebi F, Jafari S H, Farnia S M F. SbB-g-GMA copolymer as a dual functional reactive compatibilizer and impact modifier for potential recycling of PET and PS via melt blending approach[J]. Journal of Polymers and the Environment, 2023, 31(7): 3106-3119. |
90 | Martey S, Jamalzadeh M, Chen W T, et al. The role of nanoclay in processing immiscible polypropylene and poly(ethylene terephthalate) waste blends using twin screw extrusion[J]. Composites Part B: Engineering, 2024, 276: 111320. |
91 | Coba-Daza S, Otaegi I, Aramburu N, et al. Unlocking superior properties in polypropylene/polyethylene terephthalate (PP/PET) blends using an ethylene-butylene-acrylate terpolymer reactive compatibilizer[J]. Polymer Testing, 2024, 130: 108293. |
92 | Shahrajabian H, Sadeghian F. The investigation of alumina nanoparticles' effects on the mechanical and thermal properties of HDPE/rPET/MAPE blends[J]. International Nano Letters, 2019, 9(3): 213-219. |
93 | Wang D R, Luo F L, Luo C H. A novel blend material to improve the crystallization and mechanical properties of poly (ethylene terephthalate)[J]. Journal of Polymer Research, 2019, 26(7): 170. |
94 | Han K H, Jang M G, Juhn K J, et al. The effects of compatibilizers on the morphological, mechanical, and optical properties of biaxially oriented poly(ethylene terephthalate)/syndiotactic polystyrene blend films[J]. Macromolecular Research, 2018, 26(3): 254-262. |
1 | Ren T X, Zhan H H, Xu H Z, et al. Recycling and high-value utilization of polyethylene terephthalate wastes: a review[J]. Environmental Research, 2024, 249: 118428. |
2 | Hu B, Wang S, Yan J B, et al. Review of waste plastics treatment and utilization: efficient conversion and high value utilization[J]. Process Safety and Environmental Protection, 2024, 183: 378-398. |
3 | Wang T, Liu B, Xue Y J, et al. Effect of textile waste on incineration behavior of dyeing sludge: combustion characteristics, gas emissions, kinetics[J]. Journal of Cleaner Production, 2024, 435: 140619. |
4 | Melikoglu M, Asci A. Quantification of Turkey's wasted, landfilled, recycled and combusted PET[J]. Environmental Development, 2022, 44: 100773. |
5 | Gong H, Li R X, Li F, et al. Microplastic pollution in water environment of typical nature reserves and scenery districts in Southern China[J]. Science of the Total Environment, 2023, 903: 166628. |
6 | Sinha V, Patel M R, Patel J V. Pet waste management by chemical recycling: a review[J]. Journal of Polymers and the Environment, 2010, 18(1): 8-25. |
7 | Chen J K, Dul S, Lehner S, et al. Mechanical recycling of PET containing mixtures of phosphorus flame retardants[J]. Journal of Materials Science & Technology, 2024, 194: 167-179. |
8 | Liu Y F, Fu W M, Liu T, et al. Microwave pyrolysis of polyethylene terephthalate (PET) plastic bottle sheets for energy recovery[J]. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105414. |
9 | Yoshioka T, Kitagawa E, Mizoguchi T, et al. High selective conversion of poly(ethylene terephthalate) into oil using Ca(OH)2 [J]. Chemistry Letters, 2004, 33(3): 282-283. |
10 | Qiu J R, Chen Y X, Zhang L Q, et al. A comprehensive review on enzymatic biodegradation of polyethylene terephthalate[J]. Environmental Research, 2024, 240: 117427. |
11 | Tokiwa Y, Suzuki T. Hydrolysis of polyesters by lipases[J]. Nature, 1977, 270(5632): 76-78. |
12 | Mican J, Jaradat D M M, Liu W D, et al. Exploring new galaxies: perspectives on the discovery of novel PET-degrading enzymes[J]. Applied Catalysis B: Environmental, 2024, 342: 123404. |
95 | Lotfi M. Optimization of catalyst content for recycled polyethylene terephthalate (PET) and polycarbonate (PC) blending[J]. Polymer Bulletin, 2023, 80(11): 12319-12331. |
96 | Si G F, Li C, Chen M, et al. Polymer multi-block and multi-block+ strategies for the upcycling of mixed polyolefins and other plastics[J]. Angewandte Chemie International Edition, 2023, 62(49): e202311733. |
97 | Padhan R K, Gupta A A. Preparation and evaluation of waste PET derived polyurethane polymer modified bitumen through in situ polymerization reaction[J]. Construction and Building Materials, 2018, 158: 337-345. |
98 | Li F, Yao X Q, Ding R, et al. Directional glycolysis of waste PET using deep eutectic solvents for preparation of aromatic-based polyurethane elastomers[J]. Green Chemistry, 2024, 26(18): 9802-9813. |
99 | Zhou X, Wang G S, Li D X, et al. Shape-memory polyurethane elastomer originated from waste PET plastic and their composites with carbon nanotube for sensitive and stretchable strain sensor[J]. Composites Part A: Applied Science and Manufacturing, 2024, 177: 107920. |
100 | Zhang Y, Tian F, Wu Z S, et al. Chemical conversion of waste PET to valued-added bis(2-hydroxyethyl) terephthalamide through aminolysis[J]. Materials Today Communications, 2022, 32: 104045. |
101 | Chen Y H, Ranganathan P, Lee Y H, et al. New strategy and polymer design to synthesize polyamide 66 (PA66) copolymers with aromatic moieties from recycled PET (rPET)[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(9): 3518-3528. |
102 | Bambalaza S E, Xakalashe B S, Coetsee Y, et al. Co-carbonization of discard coal with waste polyethylene terephthalate towards the preparation of metallurgical coke[J]. Materials, 2023, 16(7): 2782. |
103 | Wang R, Chen X H, Li Q Y, et al. Solvothermal preparation of nitrogen and phosphorus-doped carbon dots with PET waste as precursor and its application[J]. Materials Today Communications, 2023, 34: 104918. |
104 | Yuan X Z, Kumar N M, Brigljević B, et al. Sustainability-inspired upcycling of waste polyethylene terephthalate plastic into porous carbon for CO2 capture[J]. Green Chemistry, 2022, 24(4): 1494-1504. |
105 | Gong Z, Dai Z K, Dong Z Y, et al. Green synthesis of luminescent La-MOF nanoparticle from waste poly(ethylene terephthalate) for high-performance in Fe(Ⅲ) detection[J]. Rare Metals, 2024, 43(8): 3833-3843. |
106 | Wang C Y, Chu H Y, Wang C C. Converting waste PET plastics to high value-added MOFs-based functional materials: a state of the art review[J]. Coordination Chemistry Reviews, 2024, 518: 216106. |
13 | Zhang S B, Xue Y Y, Wu Y F, et al. PET recycling under mild conditions via substituent-modulated intramolecular hydrolysis[J]. Chemical Science, 2023, 14(24): 6558-6563. |
14 | Pham D D, Cho J. Low-energy catalytic methanolysis of poly(ethyleneterephthalate)[J]. Green Chemistry, 2021, 23(1): 511-525. |
15 | Le N H, Ngoc Van T T, Shong B, et al. Low-temperature glycolysis of polyethylene terephthalate[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(51): 17261-17273. |
16 | Shukla S R, Harad A M. Aminolysis of polyethylene terephthalate waste[J]. Polymer Degradation and Stability, 2006, 91(8): 1850-1854. |
17 | Jiang H Y, Zhou J H, Zhou Q, et al. Microwave assisted plastic waste derived O vacancies enriched cobalt oxide/porous carbon material for highly efficient carbamazepine degradation via peroxymonosulfate activation[J]. Chemical Engineering Journal, 2024, 489: 151256. |
18 | Cho J, Kim B, Kwon T, et al. Electrocatalytic upcycling of plastic waste[J]. Green Chemistry, 2023, 25(21): 8444-8458. |
19 | Kim S, Kong D, Zheng X L, et al. Upcycling plastic wastes into value-added products via electrocatalysis and photoelectrocatalysis[J]. Journal of Energy Chemistry, 2024, 91: 522-541. |
20 | Liu S B, Kots P A, Vance B C, et al. Plastic waste to fuels by hydrocracking at mild conditions[J]. Science Advances, 2021, 7(17): eabf8283. |
21 | Jehanno C, Alty J W, Roosen M, et al. Critical advances and future opportunities in upcycling commodity polymers[J]. Nature, 2022, 603(7903): 803-814. |
22 | Ügdüler S, van Geem K M, Denolf R, et al. Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis[J]. Green Chemistry, 2020, 22(16): 5376-5394. |
23 | Kim N K, Lee S H, Park H D. Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: a critical review[J]. Bioresource Technology, 2022, 363: 127931. |
24 | Pang K, Kotek R, Tonelli A. Review of conventional and novel polymerization processes for polyesters[J]. Progress in Polymer Science, 2006, 31(11): 1009-1037. |
25 | Ghosal K, Nayak C. Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions-hope vs. hype[J]. Materials Advances, 2022, 3(4): 1974-1992. |
26 | Chan K, Zinchenko A. Design and synthesis of functional materials by chemical recycling of waste polyethylene terephthalate (PET) plastic: opportunities and challenges[J]. Journal of Cleaner Production, 2023, 433: 139828. |
27 | Bai X S, Aireddy D R, Roy A, et al. Solvent-free depolymerization of plastic waste enabled by plastic-catalyst interfacial engineering[J]. Angewandte Chemie International Edition, 2023, 62(46): e202309949. |
28 | Cao R C, Zhang M Q, Jiao Y C, et al. Co-upcycling of polyvinyl chloride and polyesters[J]. Nature Sustainability, 2023, 6: 1685-1692. |
29 | Carniel A, Ferreira dos Santos N, Buarque F S, et al. From trash to cash: current strategies for bio-upcycling of recaptured monomeric building blocks from poly(ethylene terephthalate) (PET) waste[J]. Green Chemistry, 2024, 26(10): 5708-5743. |
30 | Gao P, Lv H, Qian S K, et al. One-step synthesized solid acid catalyst with high Zr content for efficient and green PET degradation in supercritical CO2 [J]. Industrial & Engineering Chemistry Research, 2024, 63(17): 7593-7604. |
31 | Sun Q, Zheng Y Y, Yun L X, et al. Fe3O4 nanodispersions as efficient and recoverable magnetic nanocatalysts for sustainable PET glycolysis[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(19): 7586-7595. |
32 | Cheng J N, Xie J, Xi Y J, et al. Selective upcycling of polyethylene terephthalate towards high-valued oxygenated chemical methyl p-methyl benzoate using a Cu/ZrO2 catalyst[J]. Angewandte Chemie International Edition, 2024, 63(11): e202319896. |
33 | Yun L X, Wu H, Shen Z G, et al. Ultrasmall CeO2 nanoparticles with rich oxygen defects as novel catalysts for efficient glycolysis of polyethylene terephthalate[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(16): 5278-5287. |
34 | Otton J, Ratton S, Vasnev V A, et al. Investigation of the formation of poly(ethylene terephthalate) with model molecules: kinetics and mechanisms of the catalytic esterification and alcoholysis reactions(Ⅱ): Catalysis by metallic derivatives (monofunctional reactants)[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1988, 26(8): 2199-2224. |
35 | MacDonald W. New advances in poly(ethylene terephthalate) polymerization and degradation[J]. Polymer International, 2002, 51(10): 923-930. |
36 | Apicella B, Di Serio M, Fiocca L, et al. Kinetic and catalytic aspects of the formation of poly(ethylene terephthalate) (PET) investigated with model molecules[J]. Journal of Applied Polymer Science, 1998, 69(12): 2423-2433. |
37 | Marullo S, Rizzo C, Dintcheva N T, et al. Amino acid-based cholinium ionic liquids as sustainable catalysts for PET depolymerization[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(45): 15157-15165. |
38 | Zhou L, Lu X M, Ju Z Y, et al. Alcoholysis of polyethylene terephthalate to produce dioctyl terephthalate using choline chloride-based deep eutectic solvents as efficient catalysts[J]. Green Chemistry, 2019, 21(4): 897-906. |
39 | Kirstein M, Lücking C, Biermann L, et al. Monomer recycling and repolymerization of post-consumer polyester textiles[J]. Chemie Ingenieur Technik, 2023, 95(8): 1290-1296. |
40 | Yu Y, Shen G L, Xu T J, et al. Ti-Si composite glycol salts: depolymerization and repolymerization studies of PET[J]. RSC Advances, 2023, 13(51): 36337-36345. |
41 | Zhang S B, Hu Q K, Zhang Y X, et al. Depolymerization of polyesters by a binuclear catalyst for plastic recycling[J]. Nature Sustainability, 2023, 6: 965-973. |
42 | Peng Y T, Yang J, Deng C Q, et al. Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study[J]. Nature Communications, 2023, 14(1): 3249. |
43 | Rahimi A, García J M. Chemical recycling of waste plastics for new materials production[J]. Nature Reviews Chemistry, 2017, 1: 46. |
44 | 张红明, 赵君宇, 高凤翔, 等. PET的解聚-共缩聚“一锅法”合成生物降解高分子的研究[J]. 高分子学报, 2022, 53(9): 1142-1149. |
Zhang H M, Zhao J Y, Gao F X, et al. Synthesis of biodegradable polymers by “one pot” depolymerization and polycondensation of PET[J]. Acta Polymerica Sinica, 2022, 53(9): 1142-1149. | |
45 | Paek K H, Im S G. Biodegradable aromatic-aliphatic copolyesters derived from bis(2-hydroxyethyl) terephthalate for sustainable flexible packaging applications[J]. ACS Applied Polymer Materials, 2022, 4(8): 5298-5307. |
46 | Qin L D, Li X X, Ren G, et al. Closed-loop polymer-to-polymer upcycling of waste poly (ethylene terephthalate) into biodegradable and programmable materials[J]. ChemSusChem, 2024, 17(13): e202301781. |
47 | Panchal S S, Vasava D V. Biodegradable polymeric materials: synthetic approach[J]. ACS Omega, 2020, 5(9): 4370-4379. |
48 | Flores I, Etxeberria A, Irusta L, et al. PET-ran-PLA partially degradable random copolymers prepared by organocatalysis: effect of poly(L-lactic acid) incorporation on crystallization and morphology[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8647-8659. |
107 | Roy S, Maji P K, Goh K L. Sustainable design of flexible 3D aerogel from waste PET bottle for wastewater treatment to energy harvesting device[J]. Chemical Engineering Journal, 2021, 413: 127409. |
108 | Efimov M N, Vasilev A A, Muratov D G, et al. Conversion of polyethylene terephthalate waste in the presence of cobalt compound into highly-porous metal-carbon nanocomposite (c-PET-Co)[J]. Composites Communications, 2022, 33: 101200. |
109 | 胡延庆, 胡凡, 周剑池, 等. 废弃塑料回收与转化的研究进展[J]. 中国塑料, 2024, 38(4): 79-87. |
Hu Y Q, Hu F, Zhou J C, et al. Research progress in upcycling of waste plastics[J]. China Plastics, 2024, 38(4): 79-87. | |
110 | Liu Z H, Liu S J, Zhang H M, et al. Chemical recycling of post-consumer PET into high-performance polymer aerogels[J]. Journal of Materials Chemistry A, 2024, 12(16): 9454-9461. |
49 | Zhou J L, Zhu Q Q, Pan W N, et al. Thermal stability of bio-based aliphatic-semiaromatic copolyester for melt-spun fibers with excellent mechanical properties[J]. Macromolecular Rapid Communications, 2021, 42(3): 2000498. |
50 | 尚小愉, 朱坚, 王滢, 等. 侧基含磷阻燃共聚酯的制备及其固相增黏反应[J]. 纺织学报, 2023, 44(7): 1-9. |
Shang X Y, Zhu J, Wang Y, et al. Synthesis and solid-state polymerization of flame retardant copolyester containing phosphorus side groups[J]. Journal of Textile Research, 2023, 44(7): 1-9. | |
51 | Zhang H J, Fang T X, Yao X X, et al. Catalytic amounts of an antibacterial monomer enable the upcycling of poly(ethylene terephthalate) waste[J]. Advanced Materials, 2023, 35(20): 2210758. |
52 | Fan L X, Chen L, Zhang H Y, et al. Dual photo-responsive diphenylacetylene enables PET in situ upcycling with reverse enhanced UV-resistance and strength[J]. Angewandte Chemie International Edition, 2023, 62(52): e202314448. |
53 | Rorrer N A, Nicholson S, Carpenter A, et al. Combining reclaimed PET with bio-based monomers enables plastics upcycling[J]. Joule, 2019, 3(4): 1006-1027. |
54 | Fang T X, Jiang W P, Zheng T F, et al. Catalyst- and solvent-free upcycling of poly(ethylene terephthalate) waste to biodegradable plastics[J]. Advanced Materials, 2024, 36(46): 2403728. |
55 | Wei X, Zheng W Z, Chen X F, et al. Chemical upcycling of poly(ethylene terephthalate) with binary mixed alcohols toward value-added copolyester by depolymerization and repolymerization strategy[J]. Chemical Engineering Science, 2024, 294: 120103. |
56 | 邓维. 可纺型PET/PEG嵌段共聚酯的合成与性能研究[D]. 杭州: 浙江大学, 2023. |
Deng W. Study on synthesis and properties of spinnable PET/PEG block co-polyesters[D]. Hangzhou: Zhejiang University, 2023. | |
57 | Karanastasis A A, Safin V, Pitet L M. Bio-based upcycling of poly(ethylene terephthalate) waste for the preparation of high-performance thermoplastic copolyesters[J]. Macromolecules, 2022, 55(3): 1042-1049. |
58 | Benvenuta Tapia J J, Tenorio-López J A, Martínez-Estrada A, et al. Application of RAFT-synthesized reactive tri-block copolymers for the recycling of post-consumer R-PET by melt processing[J]. Materials Chemistry and Physics, 2019, 229: 474-481. |
59 | Yang J Q, Li Z L, Xu Q Y, et al. Towards carbon neutrality: sustainable recycling and upcycling strategies and mechanisms for polyethylene terephthalate via biotic/abiotic pathways[J]. Eco-Environment & Health, 2024, 3(2): 117-130. |
[1] | 常斐, 师人博, 刘士花, 高文倩, 王一飞, 郑镔, 焦怡萱, 蓝兴英, 徐春明, 韩晔华. 石化行业产品生命周期碳足迹评价研究现状及展望[J]. 化工学报, 2025, 76(2): 419-437. |
[2] | 贾艳萍, 马艳菊, 管文昕, 杨彬, 张健, 张兰河. 响应面法优化Fe0/H2O2体系降解染料废水的工艺条件及机理[J]. 化工学报, 2025, 76(1): 348-362. |
[3] | 郭珊, 田雨, 徐永滨, 王朋, 刘治明. 废旧电池再资源化制备高性能中熵合金催化剂及其性能研究[J]. 化工学报, 2025, 76(1): 231-240. |
[4] | 赵博超, 聂一凡, 王雪婷, 田向勤, 田祎, 潘涔轩. 不同制液工艺对锰矿锰浸出回收及钙镁铁迁移影响[J]. 化工学报, 2024, 75(S1): 292-299. |
[5] | 张佳颖, 王聪, 王雅君. CNT-Co/Bi2O3催化剂光催化协同过硫酸盐活化高效降解四环素[J]. 化工学报, 2024, 75(9): 3163-3175. |
[6] | 郑晓园, 蔡炎嶙, 应芝, 王波, 豆斌林. 污水污泥磷形态亚临界水热转化研究[J]. 化工学报, 2024, 75(8): 2970-2982. |
[7] | 秦晓巧, 谭宏博, 温娜. 储能式低温空分系统热力学与经济性分析[J]. 化工学报, 2024, 75(7): 2409-2421. |
[8] | 张林, 张子怡, 李勇, 童少平. Fe-MOF-74前体制备铁-碳/氮复合材料及其活化过硫酸盐性能[J]. 化工学报, 2024, 75(5): 1882-1889. |
[9] | 吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654. |
[10] | 张天永, 张晶怡, 姜爽, 李彬, 吕东军, 陈都民, 陈雪. 弱酸性蓝AS染料排放的废盐制碳基吸附剂及利用[J]. 化工学报, 2024, 75(3): 890-899. |
[11] | 卫月星, 贺子岳, 燕可洲, 李林玉, 秦育红, 贺冲, 焦路畅. 改性煤气化渣催化降解双酚A的性能研究[J]. 化工学报, 2024, 75(3): 877-889. |
[12] | 刘昌会, 肖桐, 刘庆祎, 耿龙, 赵佳腾. 多孔二氧化钛强化的相变材料储热机理研究[J]. 化工学报, 2024, 75(2): 706-714. |
[13] | 王灵洁, 高海龙, 靳继鹏, 王志浩, 李见波. 海水中的污染物对逆电渗析电堆性能的影响[J]. 化工学报, 2024, 75(2): 695-705. |
[14] | 吴云, 龚海峰. 疏水改性羰基铁负载TiO2光催化降解石油烃污染物[J]. 化工学报, 2024, 75(12): 4555-4562. |
[15] | 肖忠良, 夏宇博, 宋刘斌, 向优涛, 赵亭亭, 罗静, 刘远佳, 邓鹏辉, 颜群轩. 磷酸-酒石酸体系协同浸出废旧磷酸铁锂工艺[J]. 化工学报, 2024, 75(12): 4780-4792. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 47
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 75
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||