1 |
Liu C H, Zhang J H, Liu J, et al. Highly efficient thermal energy storage using a hybrid hypercrosslinked polymer[J]. Angewandte Chemie (International Ed. in English), 2021, 60(25): 13978-13987.
|
2 |
Liu Q Y, Zhang J H, Liu J, et al. Self-healed inorganic phase change materials for thermal energy harvesting and management[J]. Applied Thermal Engineering, 2023, 219: 119423.
|
3 |
Atinafu D G, Dong W J, Berardi U, et al. Phase change materials stabilized by porous metal supramolecular gels: gelation effect on loading capacity and thermal performance[J]. Chemical Engineering Journal, 2020, 394: 124806.
|
4 |
Usman A, Xiong F, Aftab W, et al. Emerging solid-to-solid phase-change materials for thermal-energy harvesting, storage, and utilization[J]. Advanced Materials, 2022, 34(41): e2202457.
|
5 |
Benner Jingru Z, Shannon Rebecca C, Wu W T, et al. The effect of micro-encapsulation on thermal characteristics of metallic phase change materials[J]. Applied Thermal Engineering, 2022, 207: 118055.
|
6 |
Chang C, Nie X, Li X X, et al. Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials[J]. Journal of Materials Chemistry A, 2020, 8(40): 20970-20978.
|
7 |
Dong X, Mao J F, Geng S B, et al. Study on performance optimization of sodium sulfate decahydrate phase change energy storage materials[J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(6): 3923-3934.
|
8 |
Fang Y, Qu Z G, Zhang J F, et al. Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material[J]. Applied Energy, 2020, 275: 115353.
|
9 |
Gao Y T, Zhang X L, Xu X F, et al. Application and research progress of phase change energy storage in new energy utilization[J]. Journal of Molecular Liquids, 2021, 343: 117554.
|
10 |
Hameed G, Ghafoor M A, Yousaf M, et al. Low temperature phase change materials for thermal energy storage: current status and computational perspectives[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101808.
|
11 |
Saleel C A. A review on the use of coconut oil as an organic phase change material with its melting process, heat transfer, and energy storage characteristics[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(7): 4451-4472.
|
12 |
Liu C H, Zong J H, Zhang J H, et al. Knitting aryl network polymers (KAPs)-embedded copper foam enables highly efficient thermal energy storage[J]. Journal of Materials Chemistry A, 2020, 8(30): 15177-15186.
|
13 |
Liu C H, Song Y, Ze X, et al. Highly efficient thermal energy storage enabled by a hierarchical structured hypercrosslinked polymer/expanded graphite composite[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119068.
|
14 |
Hu H L. Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system[J]. Composites Part B Engineering, 2020, 195(15): 108094.
|
15 |
Liu C H, Du P X, Fang B, et al. Experimental study on a functional microencapsulated phase change material for thermal management[J]. International Communications in Heat and Mass Transfer, 2020, 118: 104876.
|
16 |
Kumar A, Verma P, Varshney L. An experimental and numerical study on phase change material melting rate enhancement for a horizontal semi-circular shell and tube thermal energy storage system[J]. Journal of Energy Storage, 2022, 45: 103734.
|
17 |
Li J, Zhu Z Y, Arshad A, et al. Magnetic field-induced enhancement of phase change heat transfer via biomimetic porous structure for solar-thermal energy storage[J]. Journal of Bionic Engineering, 2021, 18(5): 1215-1224.
|
18 |
Li R X, Zhang Y, Chen H, et al. Exploring thermodynamic potential of multiple phase change thermal energy storage for adiabatic compressed air energy storage system[J]. Journal of Energy Storage, 2021, 33: 102054.
|
19 |
Yan C N, Meng N, Lyu W, et al. Hierarchical porous hollow carbon spheres derived from spirofluorene- and aniline-linked conjugated microporous polymer for phase change energy storage[J]. Carbon, 2021, 176: 178-187.
|
20 |
Atinafu D G, Yun B Y, Wi S, et al. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities[J]. Environmental Research, 2021, 195: 110853.
|
21 |
Zhao B, Wang Y C, Wang C B, et al. Thermal conductivity enhancement and shape stabilization of phase change thermal storage material reinforced by combustion synthesized porous Al2O3 [J]. Journal of Energy Storage, 2021, 42: 103028.
|
22 |
Li B M, Shu D, Wang R F, et al. Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage[J]. Renewable Energy, 2020, 145: 84-92.
|
23 |
Liu C H, Xu Z, Song Y, et al. A novel shape-stabilization strategy for phase change thermal energy storage[J]. Journal of Materials Chemistry A, 2019, 7(14): 8194-8203.
|
24 |
McKenna P, Turner W J N, Finn D P. Thermal energy storage using phase change material: analysis of partial tank charging and discharging on system performance in a building cooling application[J]. Applied Thermal Engineering, 2021, 198: 117437.
|
25 |
Mochane M J, Mokhena T C, Motaung T E, et al. Shape-stabilized phase change materials of polyolefin/wax blends and their composites[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(5): 2951-2963.
|
26 |
Radomska E, Mika L, Sztekler K, et al. The impact of heat exchangers' constructions on the melting and solidification time of phase change materials[J]. Energies, 2020, 13(18): 4840.
|
27 |
Liu W, Zhang X L, Ji J, et al. A review on thermal properties improvement of phase change materials and its combination with solar thermal energy storage[J]. Energy Technology, 2021, 9(7): 2100169.
|
28 |
Louanate A, El Otmani R, Kandoussi K, et al. Dynamic modeling and performance assessment of single and double phase change material layer-integrated buildings in Mediterranean climate zone[J]. Journal of Building Physics, 2021, 44(5): 461-478.
|
29 |
Ma B, Wei K, Huang X F, et al. Preparation and investigation of NiTi alloy phase-change heat storage asphalt mixture[J]. Journal of Materials in Civil Engineering, 2020, 32(9): 04020250.
|
30 |
Tie J, Liu X, Tie S N, et al. Packing and properties of composite phase change energy storage materials based on SiC nanowires and Na2SO4·10H2O[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 855-862.
|
31 |
Abdul Jaleel S A, Kim T, Baik S. Covalently functionalized leakage-free healable phase-change interface materials with extraordinary high-thermal conductivity and low-thermal resistance[J]. Advanced Materials, 2023, 35(30): e2300956.
|
32 |
Liu Q Y, Xiao T, Zhao J T, et al. Phase change thermal energy storage enabled by an in situ formed porous TiO2 [J]. Small, 2023, 19(5): e2204998.
|
33 |
张建雨, 王丽华, 潘金亮, 等. 南阳五种石油蜡的组成与晶体结构[J]. 华东理工大学学报(自然科学版), 2014, 40(3): 286-291, 301.
|
|
Zhang J Y, Wang L H, Pan J L, et al. Composition and crystal structure of five petroleum waxes of Nanyang[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2014, 40(3): 286-291, 301.
|