化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1882-1889.DOI: 10.11949/0438-1157.20231263
收稿日期:
2023-12-04
修回日期:
2024-01-17
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
童少平
作者简介:
张林(1998—),男,硕士研究生,1345931471@qq.com
基金资助:
Lin ZHANG(), Ziyi ZHANG, Yong LI, Shaoping TONG(
)
Received:
2023-12-04
Revised:
2024-01-17
Online:
2024-05-25
Published:
2024-06-25
Contact:
Shaoping TONG
摘要:
利用Fe-MOF-74和g-C3N4前体制备了复合材料铁-碳/氮(记为Fe-MOF-C/N),并研究了其活化过硫酸氢钾(PMS)的性能。XRD、SEM和XPS分析表明,Fe-MOF-C/N呈多孔状结构,主要由物相Fe3N、C0.08Fe1.92和石墨组成。利用Fe-MOF-C/N活化PMS降解双酚A (BPA)结果表明,与前期的Fe-C/N-0.5∶1(由FeC2O4和g-C3N4制备)相比,Fe-MOF-C/N具有更优异的催化性能,相同条件下Fe-MOF-C/N/PMS对BPA的降解率达95.21% (6 min),比Fe-C/N-0.5∶1/PMS高30.4%。优化相应的实验条件后,6 min内BPA的化学需氧量(COD)去除率达59.72%。自由基猝灭实验表明,Fe-MOF-C/N/PMS的活性物种主要是1O2。稳定性实验表明Fe-MOF-C/N稳定性较好,使用5次后,BPA的降解率仅下降9.0%,应用前景良好。
中图分类号:
张林, 张子怡, 李勇, 童少平. Fe-MOF-74前体制备铁-碳/氮复合材料及其活化过硫酸盐性能[J]. 化工学报, 2024, 75(5): 1882-1889.
Lin ZHANG, Ziyi ZHANG, Yong LI, Shaoping TONG. Preparation of Fe-carbon/nitrogen composites from Fe-MOF-74 precusor and its performance in activating peroxymonosulfate[J]. CIESC Journal, 2024, 75(5): 1882-1889.
34 | 岳敏, 王璟, 韩玉泽, 等. 盐助溶液燃烧法制备MnFe2O4催化过一硫酸盐降解双酚A[J]. 化工学报, 2020, 71(12): 5589-5598. |
Yue M, Wang J, Han Y Z, et al. Degradation of bisphenol A by peroxymonosulfate activated by MnFe2O4 prepared by salt-assisted solution combustion synthesis[J]. CIESC Journal, 2020, 71(12): 5589-5598. | |
35 | Qi F, Chu W, Xu B B. Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate[J]. Applied Catalysis B-environmental, 2013, 134: 324-332. |
36 | 张贤胜, 孙婧雯, 刘智峰. CoFe2O4/MnO2活化过一硫酸盐降解盐酸四环素的研究[J]. 能源环境保护, 2023, 37(5): 57-70. |
Zhang X S, Sun J W, Liu Z F. Degradation of tetracycline hydrochloride by CoFe2O4/MnO2 activated permonosulfate[J]. Energy Environmental Protection, 2023, 37(5): 57-70. | |
1 | Peng Y T, Tang H M, Yao B, et al. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: a review[J]. Chemical Engineering Journal, 2021, 414: 128800. |
2 | Do S H, Jo J H, Jo Y H, et al. Application of a peroxymonosulfate/cobalt (PMS/Co(Ⅱ)) system to treat diesel-contaminated soil[J]. Chemosphere, 2009, 77(8): 1127-1131. |
3 | Zhou M Z, Li Q H, Wang X, et al. Electrokinetic combined peroxymonosulfate (PMS) remediation of PAH contaminated soil under different enhance methods[J]. Chemosphere, 2022, 286: 131595. |
4 | 刘祺, 陈蕾. 基于硫酸根自由基的高级氧化技术在污水处理中的应用[J]. 应用化工, 2022, 51(5): 1383-1388. |
Liu Q, Chen L. Application of advanced oxidation technology based on sulfate radical in wastewater treatment[J]. Applied Chemical Industry, 2022, 51(5): 1383-1388. | |
5 | Gao Y, Wu T W, Yang C D, et al. Activity trends and mechanisms in peroxymonosulfate-assisted catalytic production of singlet oxygen over atomic metal-N-C catalysts[J]. Angewandte Chemie (International Ed. In English), 2021, 60(41): 22513-22521. |
6 | Ma C Y, Guo Y J, Zhang D F, et al. Metal-nitrogen-carbon catalysts for peroxymonosulfate activation to degrade aquatic organic contaminants: rational design, size-effect description, applications and mechanisms[J]. Chemical Engineering Journal, 2023, 454: 140216. |
7 | Zhou X Q, Zhao Q D, Wang J, et al. Nonradical oxidation processes in PMS-based heterogeneous catalytic system: generation, identification, oxidation characteristics, challenges response and application prospects[J]. Chemical Engineering Journal, 2021, 410: 128312. |
8 | Tan L, Xia Y, Wang S Y, et al. Hierarchical porous-enhanced peroxymonosulfate activation via 3D ordered macro-microporous Fe-NC: Role of high-valent iron-oxo species and electron-transfer mechanism[J]. Journal of Cleaner Production, 2023, 383: 135500. |
9 | Liu J W, Peng C S, Shi X L. Preparation, characterization, and applications of Fe-based catalysts in advanced oxidation processes for organics removal: a review[J]. Environmental Pollution, 2022, 293: 118565. |
10 | Ren M, Hou J Q, Ma J, et al. Superior electron utilization of the intermetallic L10-FePt-dispersed g-C3N4 for high-efficiency activating peroxymonosulfate[J]. Separation and Purification Technology, 2022, 302: 122105. |
11 | Wang S Z, Wang J L. Synergistic effect of PMS activation by Fe0@Fe3O4 anchored on N, S, O co-doped carbon composite for degradation of sulfamethoxazole[J]. Chemical Engineering Journal, 2022, 427: 131960. |
12 | Wang J J, Wang C, Tong S P. A novel composite Fe-N/O catalyst for the effective enhancement of oxidative capacity of persulfate at ambient temperature[J]. Catalysis Communications, 2018, 103: 105-109. |
13 | Wang C, Yang Q Q, Li Z H, et al. A novel carbon-coated Fe-C/N composite as a highly active heterogeneous catalyst for the degradation of Acid Red 73 by persulfate[J]. Separation and Purification Technology, 2019, 213: 447-455. |
14 | 赵晨. Fe-MOFs衍生的碳包覆铁纳米粒子催化剂的制备及傅克酰基化反应性能[D]. 长春: 吉林大学, 2022. |
Zhao C. Carbon-wrapped iron nanoparticle catalysts derived from Fe-MOFs for friedel-crafts acylation reaction[D]. Changchun: Jilin University, 2022. | |
15 | Wang Z, Laddha G, Kanitkar S, et al. Metal organic framework-mediated synthesis of potassium-promoted cobalt-based catalysts for higher oxygenates synthesis[J]. Catalysis Today, 2017, 298: 209-215. |
16 | Li Y J, Zhang Z Y, Zhang L, et al. Preparation of metal organic frame derived MgO-porous carbon composite and its high catalytic activity in ozonation with excellent stability[J]. Journal of the Taiwan Institute of Chemical Engineers, 2024, 156: 105339. |
17 | Miao F, Cui P, Yu S J, et al. In situ fabrication of a 3D self-supported porous Ni-Mo-Cu catalyst for an efficient hydrogen evolution reaction[J]. Dalton Transactions, 2023, 52(25): 8654-8660. |
18 | Ju J, Kim M, Jang S, et al. 3D in situ hollow carbon fiber/carbon nanosheet/Fe3C@Fe3O4 by solventless one-step synthesis and its superior supercapacitor performance[J]. Electrochimica Acta, 2017, 252: 215-225. |
19 | Xu H M, Ma W S, Zhang T T, et al. Efficient inhibition of Salmonella on chestnuts via Fe3C/N-C bacteriostatic suspension prepared by electrochemical method[J]. Inorganic Chemistry Communications, 2020, 118: 108034. |
20 | Wang T L, Xu L C, Sun C X, et al. Synthesis of hierarchically structured Fe3C/CNTs composites in a FeNC matrix for use as efficient ORR electrocatalysts[J]. RSC Advances, 2023, 13(6): 3835-3842. |
21 | Wang W, Liu L, Leng W C, et al. Coordination polymer-derived Fe3N nanoparticles for efficient electrocatalytic oxygen evolution[J]. Inorganic Chemistry, 2021, 60(16): 12136-12150. |
22 | Zhao J F, Weng Y C, Xu S L, et al. Protein-mediated synthesis of Fe3N nanoparticles embedded in hierarchical porous carbon for enhanced reversible lithium storage[J]. Journal of Power Sources, 2020, 464: 228246. |
23 | Ji S Y, Yang Y L, Zhou Z W, et al. Photocatalysis-Fenton of Fe-doped g-C3N4 catalyst and its excellent degradation performance towards RhB[J]. Journal of Water Process Engineering, 2021, 40: 101804. |
24 | Tang F, Lei H T, Wang S J, et al. A novel Fe-N-C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes[J]. Nanoscale, 2017, 9(44): 17364-17370. |
25 | Li Y B, Yan Y R, Ming H, et al. One-step synthesis Fe3N surface-modified Fe3O4 nanoparticles with excellent lithium storage ability[J]. Applied Surface Science, 2014, 305: 683-688. |
26 | Li C, Zhang R, Ba X, et al. Fe Nanoparticles encapsulated in N-doped porous carbon for efficient oxygen reduction in alkaline media[J]. Journal of Electrochemistry, 2023, 29(5): 2210241. |
27 | Eissa A A, Peera S G, Kim N H, et al. G-C3N4 templated synthesis of the Fe3C@NSC electrocatalyst enriched with Fe-N x active sites for efficient oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2019, 7(28): 16920-16936. |
28 | Lai Y Q, Chen W, Zhang Z A, et al. Fe/Fe3C decorated 3-D porous nitrogen-doped graphene as a cathode material for rechargeable Li-O2 batteries[J]. Electrochimica Acta, 2016, 191: 733-742. |
29 | Ding M Y, Jiang W J, Yu T Q, et al. Electronically modulated FeNi composite by CeO2 porous nanosheets for water splitting at large current density[J]. Journal of Electrochemistry, 2023, 29(5): 2208121. |
30 | Wang X H, Nan Z D. Highly efficient Fenton-like catalyst Fe-g-C3N4 porous nanosheets formation and catalytic mechanism[J]. Separation and Purification Technology, 2020, 233: 116023. |
31 | Liu C, Liu L Y, Tian X, et al. Coupling metal-organic frameworks and g-C3N4 to derive Fe@N-doped graphene-like carbon for peroxymonosulfate activation: upgrading framework stability and performance[J]. Applied Catalysis B: Environmental, 2019, 255: 117763. |
32 | Ma J Q, Yang Q F, Wen Y Z, et al. Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range[J]. Applied Catalysis B: Environmental, 2017, 201: 232-240. |
33 | 黄仕元, 邓简, 袁瀚钦, 等. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056. |
Huang S Y, Deng J, Yuan H Q, et al. Experimental study on activation of peroxymonosulfate by cobalt-enhanced ferromagnet[J]. CIESC Journal, 2022, 73(7): 3045-3056. |
[1] | 刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
[2] | 丁相斐, 丘晓琳, 朱喜成, 张佳伟, 陈锦华. pH响应性气体渗透CNC/PBAT复合膜的制备与性能[J]. 化工学报, 2024, 75(3): 1040-1051. |
[3] | 卫月星, 贺子岳, 燕可洲, 李林玉, 秦育红, 贺冲, 焦路畅. 改性煤气化渣催化降解双酚A的性能研究[J]. 化工学报, 2024, 75(3): 877-889. |
[4] | 吴吉昊, 陈涛, 刘思宇, 刘梦柯, 杨卷. 双功能活化制备沥青基硬炭用于钠离子电池负极[J]. 化工学报, 2024, 75(3): 1019-1027. |
[5] | 李琢宇, 金鹏, 陈孝彦, 赵泽玉, 王庆宏, 陈春茂, 詹亚力. 零价铁活化过氧乙酸降解水中双酚A的效果与机制[J]. 化工学报, 2024, 75(3): 987-999. |
[6] | 贾艳萍, 阴东旭, 徐静仪, 张海丰, 张兰河. Fe2+/Mn2+活化亚硫酸盐降解盐酸土霉素的机理研究[J]. 化工学报, 2024, 75(2): 647-658. |
[7] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[8] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[9] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[10] | 康超, 乔金鹏, 杨胜超, 彭超, 付元鹏, 刘斌, 刘建荣, Aleksandrova Tatiana, 段晨龙. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 74(7): 2783-2799. |
[11] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[12] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[13] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[14] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[15] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 134
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||