化工学报 ›› 2025, Vol. 76 ›› Issue (8): 3834-3841.DOI: 10.11949/0438-1157.20250020
林嘉豪1,2(
), 付芳忠1,2, 叶昊辉1,2, 胡金1,2, 姚明灿1,2, 范鹤林1,2(
), 王旭1, 王瑞祥1,2, 徐志峰1,2
收稿日期:2025-01-06
修回日期:2025-03-17
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
范鹤林
作者简介:林嘉豪(2002—),男,硕士研究生,jxustlinjiahao@163.com
基金资助:
Jiahao LIN1,2(
), Fangzhong FU1,2, Haohui YE1,2, Jin HU1,2, Mingcan YAO1,2, Helin FAN1,2(
), Xu WANG1, Ruixiang WANG1,2, Zhifeng XU1,2
Received:2025-01-06
Revised:2025-03-17
Online:2025-08-25
Published:2025-09-17
Contact:
Helin FAN
摘要:
NdF3-LiF熔盐的输运性质(如电导率、黏度)对稀土金属钕的电解制备过程及电解生产的电能消耗等技术经济指标影响很大。本研究采用分子动力学模拟,在温度为1323 K的条件下研究了NdF3含量对NdF3-LiF熔盐局域结构和输运性质的影响。结果表明,NdF3含量增加时,[NdF9]6-和[NdF8]5-向[NdF7]4-和[NdF6]3-转变;氟离子连接类型中桥氟和端氟的占比均增加,其中桥氟占比上升幅度更大;[NdF8]5-多面体间的连接方式中,共顶角占比下降,共棱和共面的占比增加;离子的扩散能力排序为:Li+ > F- > Nd3+。随着NdF3摩尔含量从20%增加到55%,熔盐黏度从3.31 mPa·s增加到7.43 mPa·s,电导率由4.84 S·cm-1降低到1.78 S·cm-1。本研究明确了NdF3-LiF熔盐的输运性质,并揭示了其变化的本质原因,为稀土金属钕的低碳、绿色、高效制备提供了科学指导。
中图分类号:
林嘉豪, 付芳忠, 叶昊辉, 胡金, 姚明灿, 范鹤林, 王旭, 王瑞祥, 徐志峰. NdF3含量对NdF3-LiF熔盐局域结构和输运性质的影响[J]. 化工学报, 2025, 76(8): 3834-3841.
Jiahao LIN, Fangzhong FU, Haohui YE, Jin HU, Mingcan YAO, Helin FAN, Xu WANG, Ruixiang WANG, Zhifeng XU. Effect of NdF3 content on local structure and transport properties of NdF3-LiF molten salt[J]. CIESC Journal, 2025, 76(8): 3834-3841.
| 组别 | 摩尔分数/% | 质量分数/% | 密度 ρ/(g·cm-3) | 原子数量 | 体系边长/Å | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| NdF3 | LiF | NdF3 | LiF | Nd | Li | F | 总数 | |||
| R1 | 20 | 80 | 65.98 | 34.02 | 3.15 | 500 | 2000 | 3500 | 6000 | 43.16 |
| R2 | 25 | 75 | 72.11 | 27.89 | 3.28 | 600 | 1800 | 3600 | 6000 | 43.93 |
| R3 | 30 | 70 | 76.87 | 23.13 | 3.41 | 692 | 1616 | 3692 | 6000 | 44.52 |
| R4 | 35 | 65 | 80.68 | 19.32 | 3.54 | 778 | 1444 | 3778 | 6000 | 44.98 |
| R5 | 40 | 60 | 83.80 | 16.20 | 3.67 | 857 | 1286 | 3857 | 6000 | 45.32 |
| R6 | 45 | 55 | 86.39 | 13.61 | 3.80 | 931 | 1138 | 3931 | 6000 | 45.59 |
| R7 | 50 | 50 | 88.58 | 11.42 | 3.93 | 1000 | 1000 | 4000 | 6000 | 45.78 |
| R8 | 55 | 45 | 90.46 | 9.54 | 4.06 | 1065 | 870 | 4065 | 6000 | 45.93 |
表1 成分、密度和盒子尺寸参数[5,13]
Table 1 Parameters of composition, density and box size[5,13]
| 组别 | 摩尔分数/% | 质量分数/% | 密度 ρ/(g·cm-3) | 原子数量 | 体系边长/Å | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| NdF3 | LiF | NdF3 | LiF | Nd | Li | F | 总数 | |||
| R1 | 20 | 80 | 65.98 | 34.02 | 3.15 | 500 | 2000 | 3500 | 6000 | 43.16 |
| R2 | 25 | 75 | 72.11 | 27.89 | 3.28 | 600 | 1800 | 3600 | 6000 | 43.93 |
| R3 | 30 | 70 | 76.87 | 23.13 | 3.41 | 692 | 1616 | 3692 | 6000 | 44.52 |
| R4 | 35 | 65 | 80.68 | 19.32 | 3.54 | 778 | 1444 | 3778 | 6000 | 44.98 |
| R5 | 40 | 60 | 83.80 | 16.20 | 3.67 | 857 | 1286 | 3857 | 6000 | 45.32 |
| R6 | 45 | 55 | 86.39 | 13.61 | 3.80 | 931 | 1138 | 3931 | 6000 | 45.59 |
| R7 | 50 | 50 | 88.58 | 11.42 | 3.93 | 1000 | 1000 | 4000 | 6000 | 45.78 |
| R8 | 55 | 45 | 90.46 | 9.54 | 4.06 | 1065 | 870 | 4065 | 6000 | 45.93 |
| 原子i | 原子j | Aij /eV | ρ(=1/Bij )/Å | Cij /(eV·Å6) |
|---|---|---|---|---|
| Nd | Nd | 13630100 | 0.11700 | 0 |
| Nd | Li | 88906 | 0.11000 | 0 |
| Nd | F | 5813 | 0.26157 | 0 |
| Li | Li | 12659 | 0.10622 | 0 |
| Li | F | 1170 | 0.22824 | 0 |
| F | F | 1062 | 0.27645 | 0 |
表2 势参数[28-29]
Table 2 Potential parameters[28-29]
| 原子i | 原子j | Aij /eV | ρ(=1/Bij )/Å | Cij /(eV·Å6) |
|---|---|---|---|---|
| Nd | Nd | 13630100 | 0.11700 | 0 |
| Nd | Li | 88906 | 0.11000 | 0 |
| Nd | F | 5813 | 0.26157 | 0 |
| Li | Li | 12659 | 0.10622 | 0 |
| Li | F | 1170 | 0.22824 | 0 |
| F | F | 1062 | 0.27645 | 0 |
| [1] | 孔梦燃, 田晓, 王瑜, 等. 烧结钕铁硼磁体的组织结构及合金成分优化研究进展[J]. 材料导报, 2023, 37(201): 321-329. |
| Kong M Y, Tian X, Wang Y, et al. Research progress on the optimization of microstructure and alloy composition of sintered NdFeB magnets[J]. Materials Reports, 2023, 37(201): 321-329. | |
| [2] | 左思源, 李雅婧, 郑立允, 等. 热压/热变形钕铁硼永磁材料研究进展[J]. 中国稀土学报, 2024, 42(1): 1-12. |
| Zuo S Y, Li Y J, Zheng L Y, et al. Recent development of hot-pressed and hot-deformed Nd-Fe-B permanent magnetic materials[J]. Journal of the Chinese Society of Rare Earths, 2024, 42(1): 1-12. | |
| [3] | 宗国强, 肖吉昌. 氟化物熔盐的制备及其应用进展[J]. 化工进展, 2018, 37(7): 2455-2472. |
| Zong G Q, Xiao J C. Advances in the preparation and application of fluoride molten salts[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2455-2472. | |
| [4] | 刘玉宝, 陈国华, 于兵, 等. 熔盐电解法制备稀土金属技术研究进展[J]. 稀土, 2021, 42(5): 133-143. |
| Liu Y B, Chen G H, Yu B, et al. Research progress of preparation of rare earth metals by molten salt electrolysis[J]. Chinese Rare Earths, 2021, 42(5): 133-143. | |
| [5] | 郭春泰, 杜森林, 李洁, 等. NdF3-LiF-BaF2熔盐体系的密度和黏度[J]. 中国稀土学报, 1989, 7(1): 7-11. |
| Guo C T, Du L, Li J, et al. Density and viscosity of NdF3-LiF-BaF2 molten salt system[J]. Journal of the Chinese Society of Rare Earths, 1989, 7(1): 7-11. | |
| [6] | 阙靓华. LiF-NdF3-Nd2O3熔盐体系物理化学性质及Nd(Ⅲ)离子还原机理研究[D]. 赣州: 江西理工大学, 2024. |
| Que J H. Physical and chemical properties of LiF-NdF3-Nd2O3 molten salt system and the mechanism of Nd(Ⅲ) ion reduction [D]. Ganzhou: Jiangxi University of Science and Technology, 2024. | |
| [7] | 郑天仓, 任永红, 毛裕文. NdF3-LiF-Nd2O3体系黏度的研究[J]. 稀土, 2000, 21(6): 33-36. |
| Zheng T C, Ren Y H, Mao Y W. A study on the viscosity of NdF3-LiF-Nd2O3 system[J]. Chinese Rare Earths, 2000, 21(6): 33-36. | |
| [8] | 胡宪伟, 王兆文, 高炳亮, 等. NdF3-LiF-Nd2O3系熔盐电导率的CVCC法研究[J]. 东北大学学报(自然科学版), 2008, 29(9): 1294-1297. |
| Hu X W, Wang Z W, Gao B L, et al. Study on the electrical conductivity of NdF3-LiF-Nd2O3 system melts determined by CVCC technique[J]. Journal of Northeastern University (Natural Science), 2008, 29(9): 1294-1297. | |
| [9] | Zhu X P, Sun S C, Sun T, et al. Electrical conductivity of REF3-LiF (RE=La and Nd) molten salts[J]. Journal of Rare Earths, 2020, 38(6): 676-682. |
| [10] | 章珏, 郑鑫, 梁金, 等. NdF3-LiF-Nd2O3体系熔盐电导率影响因素的研究[J]. 稀有金属与硬质合金, 2014, 42(4): 17-21. |
| Zhang J, Zheng X, Liang J, et al. Study on influencing factors of electrical conductivity of NdF3-LiF-Nd2O3 molten salt[J]. Rare Metals and Cemented Carbides, 2014, 42(4): 17-21. | |
| [11] | Stefanidaki E, Photiadis G M, Kontoyannis C G, et al. Oxide solubility and Raman spectra of NdF3-LiF-KF-MgF2-Nd2O3 melts[J]. Journal of the Chemical Society, Dalton Transactions, 2002(11): 2302-2307. |
| [12] | Stefanidaki E, Hasiotis C, Kontoyannis C. Electrodeposition of neodymium from LiF-NdF3-Nd2O3 melts[J]. Electrochimica Acta, 2001, 46(17): 2665-2670. |
| [13] | Hu X W, Wang Z W, Gao B L, et al. Density and ionic structure of NdF3-LiF melts[J]. Journal of Rare Earths, 2010, 28(4): 587-590. |
| [14] | 胡宪伟, 王兆文, 罗旭东, 等. 氟化物熔盐中含钕及钕-氧络合离子存在形式的研究[J]. 稀土, 2008, 29(5): 58-60. |
| Hu X W, Wang Z W, Luo X D, et al. Neodymium and neodymium-oxygen containing species in fluoride melts[J]. Chinese Rare Earths, 2008, 29(5): 58-60. | |
| [15] | Thudum R, Srivastava A, Nandi S, et al. Molten salt electrolysis of neodymium: electrolyte selection and deposition mechanism[J]. Mineral Processing and Extractive Metallurgy, 2010, 119(2): 88-92. |
| [16] | Hatem G, Gaune-Escard M. Calorimetric investigation of {xKF+(1-x)NdF3}(l)[J]. The Journal of Chemical Thermodynamics, 1993, 25(2): 219-228. |
| [17] | Lin M, Guan J Z, Aziz Diop M, et al. Unveiling ionic structure in the LiF-NdF3 molten salt system as determined by Raman spectroscopy and quantum chemical calculations[J]. Journal of Molecular Liquids, 2024, 400: 124602. |
| [18] | 贺国达, 汤睿, 段学志, 等. LiF-BeF2熔盐微观结构及扩散特性的分子动力学研究[J]. 化工学报, 2020, 71(8): 3565-3574. |
| He G D, Tang R, Duan X Z, et al. Molecular dynamics investigation on microstructure and diffusion properties of LiF-BeF2 molten salt[J]. CIESC Journal, 2020, 71(8): 3565-3574, 3849. | |
| [19] | 张永泉, 玄伟伟. 碱金属/(FeO+CaO+MgO)对硅酸盐灰熔渣结构和黏度的影响机理[J]. 化工学报, 2023, 74(4): 1764-1771. |
| Zhang Y Q, Xuan W W. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771. | |
| [20] | Du L C, Xie W J, Ding J, et al. Molecular dynamics simulations of the thermodynamic properties and local structures on molten alkali carbonate Na2CO3 [J]. International Journal of Heat and Mass Transfer, 2019, 131: 41-51. |
| [21] | Fan H L, Wang R X, Xu Z F, et al. The effect of B2O3 on the structure and properties of titanium slag melt by molecular dynamics simulations[J]. Journal of Materials Research and Technology, 2021, 15: 1046-1058. |
| [22] | Fan H L, Yao M C, Fu F Z, et al. Local structure and transport characteristics of TiO2-FeO-Al2O3 system with various FeO contents based on molecular dynamics simulations[J]. Metallurgical and Materials Transactions B, 2024, 55(6): 4650-4659. |
| [23] | Fan H L, Zhu Y Z, Xu Z F, et al. Structure of the TiO2-MgO-Al2O3 system: insights from molecular dynamics simulations[J]. Journal of Non-Crystalline Solids, 2022, 584: 121482. |
| [24] | Zhang Y J, Cai B Q, Wang X, et al. Dissolution and structural evolution of Yb2O3 in eutectic LiF-YbF3 molten salts[J]. Journal of Fluorine Chemistry, 2023, 269: 110145. |
| [25] | 付殿威, 张灿灿, 娜荷芽, 等. 基于分子动力学的熔盐热物性研究进展[J]. 储能科学与技术, 2023, 12(12): 3873-3882. |
| Fu D W, Zhang C C, Na H Y, et al. Research progress on thermophysical properties of molten salt based on molecular dynamics[J]. Energy Storage Science and Technology, 2023, 12(12): 3873-3882. | |
| [26] | Tosi M P, Fumi F G. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides(Ⅱ): The generalized Huggins-Mayer form[J]. Journal of Physics and Chemistry of Solids, 1964, 25(1): 45-52. |
| [27] | 姜涛, 王宁, 程长明, 等. LiCl-KCl-CeCl3熔盐结构与热力学的分子动力学模拟[J]. 物理化学学报, 2016, 32(3): 647-655. |
| Jiang T, Wang N, Cheng C M, et al. Molecular dynamics simulation on the structure and thermodynamics of molten LiCl-KCl-CeCl3 [J]. Acta Physico-Chimica Sinica, 2016, 32(3): 647-655. | |
| [28] | Galashev A Y, Rakhmanova O R, Abramova K A, et al. Molecular dynamics and experimental study of the effect of CeF3 and NdF3 additives on the physical properties of FLiNaK[J]. The Journal of Physical Chemistry. B, 2023, 127(5): 1197-1208. |
| [29] | Zakiryanov D O. Applying the Born-Mayer model to describe the physicochemical properties of FLiNaK ternary melt[J]. Computational and Theoretical Chemistry, 2023, 1219: 113951. |
| [30] | Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. |
| [31] | Li P F, Song L F, Merz K M. Parameterization of highly charged metal ions using the 12-6-4 LJ-type nonbonded model in explicit water[J]. The Journal of Physical Chemistry B, 2015, 119(3): 883-895. |
| [32] | 杨忠保, 郭春秦, 唐定骧. LaF3-LiF熔体结构的X射线衍射分析[J]. 中国稀土学报, 1992, 10(1): 75-77. |
| Yang Z B, Guo C Q, Tang D C. X-ray diffraction analysis of LaF3-LiF melt structure[J]. Journal of the Chinese Society of Rare Earths, 1992, 10(1): 75-77. | |
| [33] | Bessada C, Rakhmatullin A, Rollet A L, et al. High temperature NMR approach of mixtures of rare earth and alkali fluorides: an insight into the local structure[J]. Journal of Fluorine Chemistry, 2009, 130(1): 45-52. |
| [34] | 侯怀宇, 谢刚, 陈书荣, 等. NaF-AlF3系熔盐结构的分子动力学计算[J]. 中国有色金属学报, 2000, 10(6): 914-918. |
| Hou H Y, Xie G, Chen S R, et al. Molecular dynamics calculation of NaF-AlF3 molten salt structure[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(6): 914-918. | |
| [35] | 徐驰, 苏航, 陈念贻, 等. DyF3-BaF2-LiF三元系熔体结构的计算机模拟研究[J]. 金属学报, 1995, 31(3): B097-B102. |
| Xu C, Su H, Chen N Y, et al. Computerized simulation of structure of DyF3-BaF2-LiF molten system[J]. Acta Metallurgica Sinica, 1995, 31(3): B097-B102. | |
| [36] | 陈凌云, 刘世哲, 李冰. 采用方波伏安法研究Nd2O3在NdF3-LiF熔盐中的溶解度和溶解速度[J]. 稀有金属, 2016, 40(3): 243-251. |
| Chen L Y, Liu S Z, Li B. Nd2O3 solubility and dissolution rate in NdF3-LiF molten salt using square wave voltammetry[J]. Chinese Journal of Rare Metals, 2016, 40(3): 243-251. | |
| [37] | 古京九, 范晨铭, 田林, 等. Fe2O3对NdF3-LiF-Nd2O3体系电导率的影响[J]. 有色金属工程, 2021, 11(4): 47-54. |
| Gu J J, Fan C M, Tian L, et al. Effect of Fe2O3 on electrical conductivity of NdF3-LiF-Nd2O3 [J]. Nonferrous Metals Engineering, 2021, 11(4): 47-54. |
| [1] | 吴阿强, 诸葛祥群, 刘通, 王明星, 罗鲲. 纳米普鲁士蓝悬浮电解液对锂氧电池性能的影响[J]. 化工学报, 2025, 76(8): 4310-4317. |
| [2] | 罗佳欣, 袁艳. 压电材料在固态金属二次电池中的研究进展[J]. 化工学报, 2025, 76(8): 3822-3833. |
| [3] | 高正, 汪辉, 屈治国. 数据驱动辅助高通量筛选阴离子柱撑金属有机框架储氢[J]. 化工学报, 2025, 76(8): 4259-4272. |
| [4] | 王小令, 王绍清, 赵云刚, 常方哲, 穆瑞峰. 基于ReaxFF MD模拟的煤加氢热解有机Ca转化机制研究[J]. 化工学报, 2025, 76(8): 4297-4309. |
| [5] | 乔亮, 李尚, 刘新亮, 王明, 张沛, 侯影飞. 三元共聚物稠油降黏剂的合成及分子模拟研究[J]. 化工学报, 2025, 76(7): 3686-3695. |
| [6] | 李姿睿, 齐凯, 王军, 夏国栋. 基于Janus纳米通道的脱盐过程分子动力学模拟研究[J]. 化工学报, 2025, 76(7): 3531-3538. |
| [7] | 刘纹佳, 杜如雪, 王思齐, 李廷贤. 电-热转换功能型相变储热材料的研究进展及应用[J]. 化工学报, 2025, 76(7): 3185-3196. |
| [8] | 王珺仪, 夏章讯, 景粉宁, 王素力. 基于重整气的高温聚合物电解质膜燃料电池电化学阻抗谱弛豫时间分布研究[J]. 化工学报, 2025, 76(7): 3509-3520. |
| [9] | 李长宇, 曾强, 肖杰, 张阳杰, 张政, 林元华. PVDF对LATP基固态电解质膜界面修饰研究[J]. 化工学报, 2025, 76(6): 2974-2982. |
| [10] | 李紫鹃, 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷, 喻发全. 分子模拟研究三维扭曲催化芳烃-降冰片烯环化聚合物膜的CO2/N2分离机理[J]. 化工学报, 2025, 76(5): 2348-2357. |
| [11] | 齐昊, 王玉杰, 李申辉, 邹琦, 刘轶群, 赵之平. 双金属Co/Zn-ZIFs中C3H6和C3H8吸附和扩散行为分子模拟研究[J]. 化工学报, 2025, 76(5): 2313-2326. |
| [12] | 陈建兵, 常昊, 高明, 邢兵, 张磊, 刘奇磊. 基于反应模板与分子动力学的胺基相变吸收剂分相预测方法[J]. 化工学报, 2025, 76(5): 2387-2396. |
| [13] | 胡嘉朗, 姜明源, 金律铭, 张永刚, 胡鹏, 纪红兵. 机器学习辅助MOFs高通量计算筛选及气体分离研究进展[J]. 化工学报, 2025, 76(5): 1973-1996. |
| [14] | 梁铣, 张晓燕, 魏亦军, 郑云芳, 高全涵, 徐迈, 王凤武. 碱性膜燃料电池中聚电解质的耐久性研究进展[J]. 化工学报, 2025, 76(4): 1447-1462. |
| [15] | 朱峰, 赵跃, 马凤翔, 刘伟. 改性UIO-66对SF6/N2混合气体及其分解产物的吸附特性[J]. 化工学报, 2025, 76(4): 1604-1616. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号