化工学报 ›› 2025, Vol. 76 ›› Issue (8): 3822-3833.DOI: 10.11949/0438-1157.20250052
收稿日期:2025-01-13
修回日期:2025-03-12
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
袁艳
作者简介:罗佳欣(2000—),女,硕士研究生,1005328122@qq.com
基金资助:Received:2025-01-13
Revised:2025-03-12
Online:2025-08-25
Published:2025-09-17
Contact:
Yan YUAN
摘要:
固态金属二次电池虽然具有较高的能量密度和良好的安全性,但是当前普遍存在固态电解质离子电导率低、电极与固态电解质界面接触性差和金属负极枝晶生长等问题,这严重阻碍了其在大规模储能中的应用前景。压电材料能够实现机械能和电能的相互转换,具有极化产生内电场的特性,在固态电池中可以用于抑制空间电荷层、促进离子输运动力学、调控金属均匀沉积等。首先介绍了压电材料的基本概念、分类和工作原理,然后详细评述了近年来压电材料在固态金属二次电池中的研究现状,最后对压电材料应用于固态电池中存在的主要问题和未来发展前景进行了总结和展望。
中图分类号:
罗佳欣, 袁艳. 压电材料在固态金属二次电池中的研究进展[J]. 化工学报, 2025, 76(8): 3822-3833.
Jiaxin LUO, Yan YUAN. Research progress of piezoelectric materials in solid-state metal secondary batteries[J]. CIESC Journal, 2025, 76(8): 3822-3833.
图1 (a)压电、热电和铁电材料的关系[3];(b)压电材料的分类[4]
Fig.1 (a) The relationship between piezoelectric, thermoelectric and ferroelectric materials[3]; (b) Classification of piezoelectric materials[4]
图2 (a)BTO改性的LiPON/LNM界面周围的Li+浓度分布示意图;(b)未改性的和BTO改性的Li/LiPON/LNM电池之间的倍率性能比较[29];(c)原位DPCSTEM观测LCO/LPSCl和BTO-LCO/LPSCl界面在1.0、1.6和2.2 V的偏置电压下的净电荷密度积累,色条定义为正负电荷密度的相对大小[30];(d) C(NH2)3ClO4涂层胞体变形示意图,其中C(NH2)3ClO4沿a方向拉伸,沿b方向压缩(左),相场仿真验证了铁电涂层中的偶极子取向和内置电场的产生(中、右)[33];(e) 最大应变状态下NCM811和NCM811-LTO颗粒的拉应力分布[34]
Fig.2 (a) Schematic illustration of Li+ concentration distribution around the BTO modified LiPON/LNM interface; (b) Comparison of the rate performance between unmodified and BTO-modified Li/LiPON/LNM batteries[29]; (c) In-situ DPCSTEM observations of net-charge-density accumulation at the LCO/LPSCl and BTO-LCO/LPSCl interface with bias voltages of 1.0, 1.6, and 2.2 V. The color bar is defined as the relative magnitude of the positive/negative charge density[30]; (d) Schematic diagram of cell distortion of C(NH2)3ClO4 coating layer, where C(NH2)3ClO4 is stretched along a direction and compressed along b direction (left). The phase-field simulation verifies the dipole orientation in the ferroelectric coating layer and the generation of built-in electric field (middle and right)[33]; (e) Tensile stress distribution for NCM811 and NCM811-LTO particles at the maximum strain state[34]
| 复合电解质 | 介电填料 | 介电常数 | 活化能/eV | 离子电导率/(S·cm-1) | 文献 |
|---|---|---|---|---|---|
| β-PVDF/LiFSI | β-PVDF | 108 | 0.22 | 7.7×10-4 | [ |
| PVDF/LiTFSI | PVDF | 9 | 0.49 | 1.77×10-5 | [ |
| p(VDF-TrFE-CTFE)/LiTFSI | P(VDF-TrFE-CTFE) | 44 | 0.26 | 3.1×10-4 | [ |
| PVDF-Si3N4 | Si3N4 | 16.2 | 0.21 | 5.7×10-4 | [ |
| PVDF/BTO-LLTO | BTO-LLTO | 24 | 0.2 | 8.2×10-4 | [ |
| PVDF/LiFSI/NaNbO3 | NaNbO3 | 20 | — | 5.56×10-4 | [ |
| PVDF/LiFSI/LiTaO3 | LiTaO3 | — | 0.24 | 4.9×10-4 | [ |
| PVDF-HFP/LiFSI/BaTi2O5 | BaTi2O5 | — | 0.078 | 3.4 × 10-4 | [ |
| PVDF/LiTFSI/BiFeO3 | BiFeO3 | — | 0.249 | 1.39× 10-4 | [ |
| PVDF-b-PTFE/LiTFSI/TiO2/BaTiO3 | TiO2/BaTiO3 | — | 0.1997 | 7.82× 10-4 | [ |
| PVDF/LiNbO3 | LiNbO3 | 18 | — | 1.081×10-3 | [ |
| PVDF/LiTFSI/Ga/Nb@LLZO/BTO | Ga/Nb@LLZO/BTO | 102 | 0.16 | 0.74×10-3 | [ |
| PVDF/LiFSI/BTO-MoSe2 | BTO-MoSe2 | — | 0.12 | 6.5 ×10-4 | [ |
表1 基于PVDF及其共聚物的介电复合电解质研究汇总
Table 1 Research summary on dielectric composite electrolytes based on PVDF and its copolymers
| 复合电解质 | 介电填料 | 介电常数 | 活化能/eV | 离子电导率/(S·cm-1) | 文献 |
|---|---|---|---|---|---|
| β-PVDF/LiFSI | β-PVDF | 108 | 0.22 | 7.7×10-4 | [ |
| PVDF/LiTFSI | PVDF | 9 | 0.49 | 1.77×10-5 | [ |
| p(VDF-TrFE-CTFE)/LiTFSI | P(VDF-TrFE-CTFE) | 44 | 0.26 | 3.1×10-4 | [ |
| PVDF-Si3N4 | Si3N4 | 16.2 | 0.21 | 5.7×10-4 | [ |
| PVDF/BTO-LLTO | BTO-LLTO | 24 | 0.2 | 8.2×10-4 | [ |
| PVDF/LiFSI/NaNbO3 | NaNbO3 | 20 | — | 5.56×10-4 | [ |
| PVDF/LiFSI/LiTaO3 | LiTaO3 | — | 0.24 | 4.9×10-4 | [ |
| PVDF-HFP/LiFSI/BaTi2O5 | BaTi2O5 | — | 0.078 | 3.4 × 10-4 | [ |
| PVDF/LiTFSI/BiFeO3 | BiFeO3 | — | 0.249 | 1.39× 10-4 | [ |
| PVDF-b-PTFE/LiTFSI/TiO2/BaTiO3 | TiO2/BaTiO3 | — | 0.1997 | 7.82× 10-4 | [ |
| PVDF/LiNbO3 | LiNbO3 | 18 | — | 1.081×10-3 | [ |
| PVDF/LiTFSI/Ga/Nb@LLZO/BTO | Ga/Nb@LLZO/BTO | 102 | 0.16 | 0.74×10-3 | [ |
| PVDF/LiFSI/BTO-MoSe2 | BTO-MoSe2 | — | 0.12 | 6.5 ×10-4 | [ |
图3 (a) 锂盐被具有相对较低εr的铁电聚合物(如PVDF)和具有较高εr的弛豫铁电聚合物[如p(VDF-TrFE)基三元聚合物]解离的示意图[35];(b) BIT纳米纤维的制备过程和晶体结构模型[44]
Fig.3 (a) Schematic diagram of the dissociation of lithium salts by a FE polymer (e.g. PVDF) with a relatively low εr and an RFE polymer [e.g. p(VDF-TrFE)-based terpolymer] with a high εr[35]; (b) Procedures for the fabrication and crystal structure model of BIT NFs[44]
图4 (a) 循环后Cu、Cu@α-PF和Cu@β-PF电极表面示意图[57];(b) BTO铁电效应调控规则锂枝晶示意图[58]
Fig.4 (a) Schematic illustration of Cu, Cu@α-PF and Cu@β-PF after cycles[57]; (b) Schematic diagram of lithium dendrites regulated by the ferroelectric effect of BTO[58]
| [1] | Zhang Y, Phuong P T T, Roake E, et al. Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials[J]. Joule, 2020, 4(2): 301-309. |
| [2] | Qi H, Chen L, Deng S Q, et al. High-entropy ferroelectric materials[J]. Nature Reviews Materials, 2023, 8: 355-356. |
| [3] | Yan M Y, Xiao Z D, Ye J J, et al. Porous ferroelectric materials for energy technologies: current status and future perspectives[J]. Energy & Environmental Science, 2021, 14(12): 6158-6190. |
| [4] | Li N, Xie K Y, Huang H T. Ferroelectric materials for high energy density batteries: progress and outlook[J]. ACS Energy Letters, 2023, 8(10): 4357-4370. |
| [5] | Zhang Y, Sun H J, Chen W. Li-modified Ba0.99Ca0.01Zr0.02Ti0.98O3 lead-free ceramics with highly improved piezoelectricity[J]. Journal of Alloys and Compounds, 2017, 694: 745-751. |
| [6] | Fadhlina H, Atiqah A, Zainuddin Z. A review on lithium doped lead-free piezoelectric materials[J]. Materials Today Communications, 2022, 33: 104835. |
| [7] | Kim Y G, Kim H, Lee G J, et al. Flexoelectric-boosted piezoelectricity of BaTiO3@SrTiO3 core-shell nanostructure determined by multiscale simulations for flexible energy harvesters[J]. Nano Energy, 2021, 89: 106469. |
| [8] | Luo H J, Liu H, Huang H B, et al. Achieving giant electrostrain of above 1% in (Bi, Na)TiO3-based lead-free piezoelectrics via introducing oxygen-defect composition[J]. Science Advances, 2023, 9(5): eade7078. |
| [9] | Wang X Z, Wang N, Liao J Y, et al. Lead-free (K, Na)NbO3 piezocatalyst with superior piezocatalysis and large-scale production[J]. Advanced Functional Materials, 2024, 34(14): 2313662. |
| [10] | Zhang M H, Zhang Q H, Yu T T, et al. Enhanced electric-field-induced strains in (K, Na)NbO3 piezoelectrics from heterogeneous structures[J]. Materials Today, 2021, 46: 44-53. |
| [11] | Suresh S, Nabiyeva T, Biniek L, et al. Poly(vinylidene fluoride) aerogels with α, β and γ crystalline forms: correlating physicochemical properties with polymorphic structures[J]. ACS Polymers Au, 2024, 4(2): 128-139. |
| [12] | Hwang C, Song W J, Song G, et al. A three-dimensional nano-web scaffold of ferroelectric beta-PVDF fibers for lithium metal plating and stripping[J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29235-29241. |
| [13] | Peng S M, Yang X, Yang Y, et al. Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites[J]. Advanced Materials, 2019, 31(21): 1807722. |
| [14] | Chen X, Qin X, Qian X, et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field[J]. Science, 2022, 375(6587): 1418-1422. |
| [15] | Liang H Q, Wu Q Y, Wan L S, et al. Thermally induced phase separation followed by in situ sol-gel process: a novel method for PVDF/SiO2 hybrid membranes[J]. Journal of Membrane Science, 2014, 465: 56-67. |
| [16] | Alam M M, Sultana A, Sarkar D, et al. Electroactive β-crystalline phase inclusion and photoluminescence response of a heat-controlled spin-coated PVDF/TiO2 free-standing nanocomposite film for a nanogenerator and an active nanosensor[J]. Nanotechnology, 2017, 28(36): 365401. |
| [17] | Jian G, Jiao Y, Meng Q Z, et al. Hydrothermal synthesis of BaTiO3 nanowires for high energy density nanocomposite capacitors[J]. Journal of Materials Science, 2020, 55(16): 6903-6914. |
| [18] | Gao G D, Zhang Q Y, Vecitis C D. CNT-PVDF composite flow-through electrode for single-pass sequential reduction-oxidation[J]. Journal of Materials Chemistry A, 2014, 2(17): 6185-6190. |
| [19] | Katzir S. The discovery of the piezoelectric effect[J]. Archive for History of Exact Sciences, 2003, 57(1): 61-91. |
| [20] | 李佳斌. 新型压电铁电材料电子性质[M]. 北京: 化学工业出版社, 2024. |
| Li J B. Electronic Property of Novel Piezoelectric Ferroelectric Materials[M]. Beijing: Chemical Industry Press, 2024. | |
| [21] | 王春雷, 李吉超, 赵明磊. 压电铁电物理[M]. 北京: 科学出版社, 2009. |
| Wang C L, Li J C, Zhao M L. Piezoelectric Ferroelectric Physics[M]. Beijing: Science Press, 2009. | |
| [22] | Famprikis T, Canepa P, Dawson J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18: 1278-1291. |
| [23] | Zou Z Y, Li Y J, Lu Z H, et al. Mobile ions in composite solids[J]. Chemical Reviews, 2020, 120(9): 4169-4221. |
| [24] | Liang C C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes[J]. Journal of the Electrochemical Society, 1973, 120(10): 1289. |
| [25] | Guo X X, Matei I, Jamnik J, et al. Defect chemical modeling of mesoscopic ion conduction in nanosized CaF2/BaF2 multilayer heterostructures[J]. Physical Review B, 2007, 76(12): 125429. |
| [26] | Gu Z Q, Ma J L, Zhu F, et al. Atomic-scale study clarifying the role of space-charge layers in a Li-ion-conducting solid electrolyte[J]. Nature Communications, 2023, 14: 1632 . |
| [27] | Wang Y, Lv Y, Su Y B, et al. 5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries[J]. Nano Energy, 2021, 90: 106589. |
| [28] | Khan M A, Nadeem M A, Idriss H. Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: a review[J]. Surface Science Reports, 2016, 71(1): 1-31. |
| [29] | Yada C, Ohmori A, Ide K, et al. Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries[J]. Advanced Energy Materials, 2014, 4(9): 1301416. |
| [30] | Wang L L, Xie R C, Chen B B, et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries[J]. Nature Communications, 2020, 11(1): 5889. |
| [31] | Jin F, Xue X Y, Zhao Y, et al. Enhanced rate capability and high-voltage cycling stability of single-crystal nickel-rich cathode by surface anchoring dielectric BaTiO3 [J]. Journal of Colloid and Interface Science, 2022, 619: 65-74. |
| [32] | Park B K, Kim H, Kim K S, et al. Interface design considering intrinsic properties of dielectric materials to minimize space-charge layer effect between oxide cathode and sulfide solid electrolyte in all-solid-state batteries[J]. Advanced Energy Materials, 2022, 12(37): 2201208. |
| [33] | Li W R, Zhang S, Zheng W J, et al. Self-polarized organic-inorganic hybrid ferroelectric cathode coatings assisted high performance all-solid-state lithium battery[J]. Advanced Functional Materials, 2023, 33(27): 2300791. |
| [34] | Dai Z S, Wang J H, Zhao H L, et al. Surface coupling between mechanical and electric fields empowering Ni-rich cathodes with superior cyclabilities for lithium-ion batteries[J]. Advanced Science, 2022, 9(18): 2200622. |
| [35] | Huang Y F, Gu T, Rui G C, et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity[J]. Energy & Environmental Science, 2021, 14(11): 6021-6029. |
| [36] | Xu C W, Zhang L, Xu Y L, et al. Filling the holes in piezopolymers with a solid electrolyte: a new paradigm of poling-free dynamic electrets for energy harvesting[J]. Journal of Materials Chemistry A, 2017, 5(1): 189-200. |
| [37] | Sultana A, Alam M M, Fabiano S, et al. Enhanced ionic transport in ferroelectric polymer fiber mats[J]. Journal of Materials Chemistry A, 2021, 9(39): 22418-22427. |
| [38] | Kang Q, Li Y, Zhuang Z C, et al. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries[J]. Journal of Energy Chemistry, 2022, 69: 194-204. |
| [39] | Yuan Y, Chen L K, Li Y H, et al. Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte[J]. Energy Materials and Devices, 2023, 1(1): 9370004. |
| [40] | Wu Y M, Zhang H, Xu Y L, et al. Ferroelectric BiFeO3 modified PVDF-based electrolytes for high-performance lithium metal batteries[J]. Journal of Materials Chemistry A, 2024, 12(31): 20403-20413. |
| [41] | Ren Z T, Gu S C, Li T, et al. A composite dielectric membrane with low dielectric loss for dendrite-free lithium deposition in lithium metal batteries[J]. Journal of Materials Chemistry A, 2024, 12(47): 32885-32894. |
| [42] | Ge S H, Wu J W, Wang R, et al. Tailoring practical solid electrolyte composites containing ferroelectric ceramic nanofibers and all-trans block copolymers for all-solid-state lithium metal batteries[J]. ACS Nano, 2024, 18(21): 13818-13828. |
| [43] | Shi P R, Ma J B, Liu M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602-610. |
| [44] | Kang J B, Yan Z R, Gao L, et al. Improved ionic conductivity and enhancedinterfacial stability of solid polymer electrolytes with porous ferroelectric ceramic nanofibers[J]. Energy Storage Materials, 2022, 53: 192-203. |
| [45] | Arya A, Saykar N G, Sharma A L. Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free-standing solid polymeric separator for energy storage/conversion devices[J]. Journal of Applied Polymer Science, 2019, 136(16): 47361. |
| [46] | Yu H, Han J S, Hwang G C, et al. Optimization of high potential cathode materials and lithium conducting hybrid solid electrolyte for high-voltage all-solid-state batteries[J]. Electrochimica Acta, 2021, 365: 137349. |
| [47] | Arjunan P, Kouthaman M, Subadevi R, et al. Superior ionic transferring polymer with silicon dioxide composite membrane via phase inversion method designed for high performance sodium-ion battery[J]. Polymers, 2020, 12(2): 405. |
| [48] | Shanmukaraj D, Wang G X, Liu H K, et al. Synthesis and characterization of SrBi4Ti4O15 ferroelectricfiller based composite polymer electrolytes for lithium ion batteries[J]. Polymer Bulletin, 2008, 60(2): 351-361. |
| [49] | Kumar A, Madaan M, Arya A, et al. Ion transport, dielectric, and electrochemical properties of sodium ion-conducting polymer nanocomposite: application in EDLC[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(13): 10873-10888. |
| [50] | Cheng H, Li D G, Xu B, et al. Amorphous silicon nitride induced high dielectric constant toward long-life solid lithium metal battery[J]. Energy Storage Materials, 2022, 53: 305-314. |
| [51] | An X F, Liu Y, Yang K, et al. Dielectric filler-induced hybrid interphase enabling robust solid-state Li metal batteries at high areal capacity[J]. Advanced Materials, 2024, 36(13): 2311195. |
| [52] | Li Z H, Wang X J, Lin X Y, et al. Ferroelectric nanorods as a polymer interface additive for high-performance garnet-based solid-state batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(29): 35684-35691. |
| [53] | Zhao J, Huang S F, Zhao Y Y, et al. Ultra-stable solid-state lithium metal batteries with ferroelectric oxide-enhanced PVDF-based hybrid solid electrolytes[J]. Journal of Materials Chemistry A, 2025, 13: 9347-9356. |
| [54] | Shan J Y, Gu R, Xu J T, et al. Heterojunction ferroelectric materials enhance ion transport and fast charging of polymer solid electrolytes for lithium metal batteries[J]. Advanced Energy Materials, 2025, 15(18): 2405220. |
| [55] | Wang S H, Yin Y X, Zuo T T, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels[J]. Advanced Materials, 2017, 29(40): 1703729. |
| [56] | Nishikawa K, Mori T, Nishida T, et al. In situ observation of dendrite growth of electrodeposited Li metal[J]. Journal of the Electrochemical Society, 2010, 157(11): A1212. |
| [57] | Xiang J W, Cheng Z X, Zhao Y, et al. A lithium-ion pump based on piezoelectric effect for improved rechargeability of lithium metal anode[J]. Advanced Science, 2019, 6(22): 1901120. |
| [58] | Guo Y P, Wang R Y, Cui C, et al. Shaping Li deposits from wild dendrites to regular crystals via the ferroelectric effect[J]. Nano Letters, 2020, 20(10): 7680-7687. |
| [59] | Xia S H, Zhao Y, Yan J H, et al. Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO3 ceramic nanofiber films[J]. ACS Nano, 2021, 15(2): 3161-3170. |
| [60] | Xu D B, Zhang P C, Wang W R, et al. Ferroelectric dipoles tailoring solid-electrolyte-interphase chemistry to enable reversible lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(4): e202416565. |
| [61] | He Y T, Zhang Y H, Sari H M K, et al. New insight into Li metal protection: regulating the Li-ion flux via dielectric polarization[J]. Nano Energy, 2021, 89: 106334. |
| [62] | Dubey B P, Vinodhkumar A, Sahoo A, et al. Microstructural tuning of solid electrolyte Na3Zr2Si2PO12 by polymer-assisted solution synthesis method and its effect on ionic conductivity and dielectric properties[J]. ACS Applied Energy Materials, 2021, 4(6): 5475-5485. |
| [63] | Sun Z, Zhao Y J, Ni Q, et al. Solid-state Na metal batteries with superior cycling stability enabled by ferroelectric enhanced Na/Na3Zr2Si2PO12 interface[J]. Small, 2022, 18(16): 2200716. |
| [64] | Wang Y M, Wang Z T, Zheng F, et al. Ferroelectric engineered electrode-composite polymer electrolyte interfaces for all-solid-state sodium metal battery[J]. Advanced Science, 2022, 9(13): 2105849. |
| [65] | Ni Q, Ding Y, Wang C Z, et al. Piezoelectric interlayer enabling a rechargeable quasisolid-state sodium battery at 0℃[J]. Advanced Materials, 2024, 36(14): 2309298. |
| [66] | Sun C, Li Y, Sun Z, et al. Ferroelectric interface for efficient sodium metal cycling in anode-free solid-state batteries[J]. Materials Today, 2024, 80: 395-405. |
| [67] | Wu K, Yi J, Liu X Y, et al. Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode[J]. Nano-Micro Letters, 2021, 13(1): 79. |
| [68] | Wang Y Z, Guo T C, Yin J, et al. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers[J]. Advanced Materials, 2022, 34(4): 2106937. |
| [69] | Zou P C, Zhang R, Yao L B, et al. Ultrahigh-rate and long-life zinc-metal anodes enabled by self-accelerated cation migration[J]. Advanced Energy Materials, 2021, 11(31): 2100982. |
| [70] | Hu X Q, Narayan B, Naresh N, et al. Ferroelectric interfaces for dendrite prevention in zinc-ion batteries[J]. Small, 2024, 20(49): 2403555. |
| [1] | 王宇涛, 龚建英, 李祥宇, 吴馨, 刘秀芳. 基于压电-声流效应的液滴定向驱动技术研究[J]. 化工学报, 2025, 76(S1): 181-186. |
| [2] | 刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893. |
| [3] | 王御风, 罗小雪, 范鸿亮, 吴白婧, 李存璞, 魏子栋. 耦合电解水制氢的绿色有机电合成——电极界面调控策略综述[J]. 化工学报, 2025, 76(8): 3753-3771. |
| [4] | 刘世昌, 李一白, 王靖, 刘永忠. 氢气驱动电化学捕碳系统的模块化设计与优化[J]. 化工学报, 2025, 76(8): 4108-4118. |
| [5] | 杨宁, 李皓男, LIN Xiao, GEORGIADOU Stella, LIN Wen-Feng. 从塑料废弃物到能源催化剂:塑料衍生碳@CoMoO4复合材料在电解水析氢反应中的应用[J]. 化工学报, 2025, 76(8): 4081-4094. |
| [6] | 李欣然, 常龙娇, 罗绍华, 李永兵, 杨瑞芬, 侯增磊, 邹杰. Ho掺杂诱导NCM622局域电子重构抑制阳离子混排的改性机制研究[J]. 化工学报, 2025, 76(7): 3733-3741. |
| [7] | 吴鹂霄, 燕溪溪, 张素娜, 徐一鸣, 钱佳颖, 乔永民, 王利军. 磷掺杂微晶石墨的制备及其在锂离子电池负极材料中的电化学性能研究[J]. 化工学报, 2025, 76(7): 3615-3625. |
| [8] | 陈培强, 郑群, 姜玉廷, 熊春华, 陈今茂, 王旭东, 黄龙, 阮曼, 徐万里. 电液流量及电流密度对海水激活电池输出特性的影响[J]. 化工学报, 2025, 76(7): 3235-3245. |
| [9] | 孙国庆, 李海波, 丁志阳, 郭文辉, 徐浩, 赵艳侠. 硅基负极材料的研究进展[J]. 化工学报, 2025, 76(7): 3197-3211. |
| [10] | 高凤凤, 程慧峰, 杨博, 郝晓刚. 电驱动NiFeMn LDH/CNTs/PVDF膜电极选择性提取钨酸根离子[J]. 化工学报, 2025, 76(7): 3350-3360. |
| [11] | 王子恒, 李文怀, 周嵬. 图形电极在固体氧化物燃料电池中的应用[J]. 化工学报, 2025, 76(7): 3153-3171. |
| [12] | 王珺仪, 夏章讯, 景粉宁, 王素力. 基于重整气的高温聚合物电解质膜燃料电池电化学阻抗谱弛豫时间分布研究[J]. 化工学报, 2025, 76(7): 3509-3520. |
| [13] | 张畅, 解强, 沙雨桐, 王炳杰, 梁鼎成, 刘金昌. 低灰低硅竹炭的制备及衍生硬炭的电化学性能[J]. 化工学报, 2025, 76(6): 3073-3083. |
| [14] | 李长宇, 曾强, 肖杰, 张阳杰, 张政, 林元华. PVDF对LATP基固态电解质膜界面修饰研究[J]. 化工学报, 2025, 76(6): 2974-2982. |
| [15] | 康佳, 刘欢, 李海燕, 罗茂亮, 姚洪. 宽温区HCl/NaOH热介质中碳钢腐蚀行为及涂层性能研究[J]. 化工学报, 2025, 76(6): 2872-2885. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号
