化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3686-3695.DOI: 10.11949/0438-1157.20241489
乔亮1(
), 李尚2, 刘新亮3, 王明1, 张沛2, 侯影飞1(
)
收稿日期:2024-12-23
修回日期:2025-02-12
出版日期:2025-07-25
发布日期:2025-08-13
通讯作者:
侯影飞
作者简介:乔亮(1999—),男,硕士研究生,1551373854@qq.com
基金资助:
Liang QIAO1(
), Shang LI2, Xinliang LIU3, Ming WANG1, Pei ZHANG2, Yingfei HOU1(
)
Received:2024-12-23
Revised:2025-02-12
Online:2025-07-25
Published:2025-08-13
Contact:
Yingfei HOU
摘要:
油溶性降黏剂因能耗低、操作简便,被认为是稠油开采和运输过程中极具应用前景的降黏剂,但存在降黏效率低、降黏机理尚不明确等问题。以甲基丙烯酸十八酯、甲基丙烯酸苄酯和马来酸酐为单体,通过自由基聚合反应合成了三元共聚物降黏剂SBM,探究其降黏效果,采用分子动力学模拟方法对其在不同类型稠油中的降黏过程进行微观机理研究。研究结果表明,该降黏剂对胜利稠油降黏效果最好,表观降黏率可达66.67%,净降黏率可达27.34%;对原油1的降黏效果优于原油2,在原油1中降黏效果主要与π-π相互作用有关,在原油2中降黏效果主要与氢键相关。
中图分类号:
乔亮, 李尚, 刘新亮, 王明, 张沛, 侯影飞. 三元共聚物稠油降黏剂的合成及分子模拟研究[J]. 化工学报, 2025, 76(7): 3686-3695.
Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil[J]. CIESC Journal, 2025, 76(7): 3686-3695.
| 原 油 | 黏度/(mPa·s) | 饱和分/%(质量) | 芳香分/%(质量) | 胶质/%(质量) | 沥青质/%(质量) |
|---|---|---|---|---|---|
| 胜利稠油 | 9828 | 22.47 | 25.21 | 32.78 | 12.69 |
| 辽河稠油 | 7392 | 23.69 | 27.47 | 27.25 | 14.97 |
表1 稠油的物理性质
Table 1 Physical properties of heavy oil
| 原 油 | 黏度/(mPa·s) | 饱和分/%(质量) | 芳香分/%(质量) | 胶质/%(质量) | 沥青质/%(质量) |
|---|---|---|---|---|---|
| 胜利稠油 | 9828 | 22.47 | 25.21 | 32.78 | 12.69 |
| 辽河稠油 | 7392 | 23.69 | 27.47 | 27.25 | 14.97 |
| 系统 | 饱和分 | 芳香分 | 胶质 | 沥青质1 | 沥青质2 | SBM |
|---|---|---|---|---|---|---|
| Oil1 | 60 | 80 | 80 | 20 | — | — |
| Oil1+SBM | 60 | 80 | 80 | 20 | — | 20 |
| Oil2 | 60 | 80 | 80 | — | 30 | — |
| Oil2+SBM | 60 | 80 | 80 | — | 30 | 20 |
表2 每个模拟稠油体系的分子组成
Table 2 Molecular composition of each simulated heavy oil system
| 系统 | 饱和分 | 芳香分 | 胶质 | 沥青质1 | 沥青质2 | SBM |
|---|---|---|---|---|---|---|
| Oil1 | 60 | 80 | 80 | 20 | — | — |
| Oil1+SBM | 60 | 80 | 80 | 20 | — | 20 |
| Oil2 | 60 | 80 | 80 | — | 30 | — |
| Oil2+SBM | 60 | 80 | 80 | — | 30 | 20 |
| 原 油 | 表观降黏率/% | 净降黏率/% |
|---|---|---|
| 胜利稠油 | 66.67 | 27.34 |
| 辽河稠油 | 58.60 | 21.78 |
表3 SBM对不同稠油的降黏效果
Table 3 Effect of SBM addition on different heavy oil
| 原 油 | 表观降黏率/% | 净降黏率/% |
|---|---|---|
| 胜利稠油 | 66.67 | 27.34 |
| 辽河稠油 | 58.60 | 21.78 |
| [1] | Boodlal D, Alexander D, John E, et al. A heavy oil reserve analysis for Trinidad and Tobago[J]. Arabian Journal of Geosciences, 2022, 15(7): 673. |
| [2] | Sun J, Guo L J, Yin X Y, et al. Investigation on drag reduction of aqueous foam for transporting thermally produced high viscosity oil[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110062. |
| [3] | Mao J C, Kang Z, Yang X J, et al. Synthesis and performance evaluation of a nanocomposite pour-point depressant and viscosity reducer for high-pour-point heavy oil[J]. Energy & Fuels, 2020, 34(7): 7965-7973. |
| [4] | Adeyanju O A, Oyekunle L O. Experimental study of water-in-oil emulsion flow on wax deposition in subsea pipelines[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106294. |
| [5] | Sánchez S, Ascanio G, Sánchez-Minero F, et al. Conjugate thermal-hydrodynamic model for the study of heavy oil transport[J]. Journal of Petroleum Science and Engineering, 2019, 179: 997-1011. |
| [6] | Li S Y, Hu Z H, Lu C, et al. Microscopic visualization of greenhouse-gases induced foamy emulsions in recovering unconventional petroleum fluids with viscosity additives[J]. Chemical Engineering Journal, 2021, 411: 128411. |
| [7] | Pei H H, Shu Z, Zhang G C, et al. Experimental study of nanoparticle and surfactant stabilized emulsion flooding to enhance heavy oil recovery[J]. Journal of Petroleum Science and Engineering, 2018, 163: 476-483. |
| [8] | Zhao D W, Wang J, Gates I D. Thermal recovery strategies for thin heavy oil reservoirs[J]. Fuel, 2014, 117: 431-441. |
| [9] | Yang Y, Liu W C, Yu J F, et al. Technology progress in high-frequency electromagnetic in situ thermal recovery of heavy oil and its prospects in low-carbon situations[J]. Energies, 2024, 17(18): 4715. |
| [10] | Chen S H, AlSofi A M, Wang J X, et al. A polycyclic-aromatic hydrocarbon-based water-soluble formulation for heavy oil viscosity reduction and oil displacement[J]. Energy & Fuels, 2023, 37(16): 11864-11880. |
| [11] | Wang T Y, Wang C H, Ma H, et al. Preparation of temperature-sensitive SiO2-PSBMA for reducing the viscosity of heavy oil[J]. Energy & Fuels, 2023, 37(3): 1896-1906. |
| [12] | Lei T M, Cao J, Li A F, et al. Synthesis and oil displacement performance evaluation of a novel functional polymer for heavy oil recovery[J]. Journal of Molecular Liquids, 2024, 402: 124746. |
| [13] | Chen M F, Wang Y F, Chen W H, et al. Synthesis and evaluation of multi-aromatic ring copolymer as viscosity reducer for enhancing heavy oil recovery[J]. Chemical Engineering Journal, 2023, 470: 144220. |
| [14] | Mao J C, Liu J W, Peng Y K, et al. Quadripolymers as viscosity reducers for heavy oil[J]. Energy & Fuels, 2018, 32(1): 119-124. |
| [15] | Mao J C, Liu J W, Wang H B, et al. Novel terpolymers as viscosity reducing agent for Tahe super heavy oil[J]. RSC Advances, 2017, 7(31): 19257-19261. |
| [16] | Sun J H, Zhang F S, Wu Y W, et al. Overview of emulsified viscosity reducer for enhancing heavy oil recovery[J]. IOP Conference Series: Materials Science and Engineering, 2019, 479: 012009. |
| [17] | Chen X Y, Wang N, Xia S Q. Research progress and development trend of heavy oil emulsifying viscosity reducer: a review[J]. Petroleum Science and Technology, 2021, 39(15/16): 550-563. |
| [18] | Saad M A, Kamil M, Abdurahman N H, et al. An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions[J]. Processes, 2019, 7(7): 470. |
| [19] | Ahmadi M, Chen Z X. Challenges and future of chemical assisted heavy oil recovery processes[J]. Advances in Colloid and Interface Science, 2020, 275: 102081. |
| [20] | Lv X B, Fan W Y, Wang Q T, et al. Synthesis, characterization, and mechanism of copolymer viscosity reducer for heavy oil[J]. Energy & Fuels, 2019, 33(5): 4053-4061. |
| [21] | Yu J, Quan H P, Huang Z Y, et al. Interaction between hydrophobic chitosan derivative and asphaltene in heavy oil to reduce viscosity of heavy oil[J]. International Journal of Biological Macromolecules, 2023, 247: 125573. |
| [22] | Zhang A P, Quan H P, Yu J, et al. Hydroxyl-functionalized carbon nanoparticles alter the asphaltene aggregate structure and reduce the viscosity of heavy oil[J]. ACS Applied Nano Materials, 2024, 7(18): 21925-21935. |
| [23] | Ahmadi M, Chen Z X. Spotlight onto surfactant-steam-bitumen interfacial behavior via molecular dynamics simulation[J]. Scientific Reports, 2021, 11(1): 19660. |
| [24] | Quan H P, Li P F, Duan W M, et al. A series of methods for investigating the effect of a flow improver on the asphaltene and resin of crude oil[J]. Energy, 2019, 187: 115872. |
| [25] | Liu D, Song Q, Tang J S, et al. Interaction between saturates, aromatics and resins during pyrolysis and oxidation of heavy oil[J]. Journal of Petroleum Science and Engineering, 2017, 154: 543-550. |
| [26] | da Costa L M, Stoyanov S R, Gusarov S, et al. Density functional theory investigation of the contributions of π-π stacking and hydrogen-bonding interactions to the aggregation of model asphaltene compounds[J]. Energy & Fuels, 2012, 26(5): 2727-2735. |
| [27] | Gray M R, Tykwinski R R, Stryker J M, et al. Supramolecular assembly model for aggregation of petroleum asphaltenes[J]. Energy & Fuels, 2011, 25(7): 3125-3134. |
| [28] | Sjöblom J, Simon S, Xu Z H. Model molecules mimicking asphaltenes[J]. Advances in Colloid and Interface Science, 2015, 218: 1-16. |
| [29] | Li Z, Han T K, Li J W, et al. Pathway of oil-soluble additives to reduce heavy crude oil viscosity depends on the molecular characteristics of asphaltene[J]. Energy & Fuels, 2024, 38(6): 4990-4997. |
| [30] | Wang C H, Gao L Y, Liu M H, et al. Self-crystallization behavior of paraffin and the mechanism study of SiO2 nanoparticles affecting paraffin crystallization[J]. Chemical Engineering Journal, 2023, 452: 139287. |
| [31] | Xu J P, Wang N, Xue S, et al. Insights into the mechanism during viscosity reduction process of heavy oil through molecule simulation[J]. Fuel, 2022, 310: 122270. |
| [32] | Wang C H, Gao L Y, Liu M H, et al. Viscosity reduction mechanism of surface-functionalized Fe3O4 nanoparticles in different types of heavy oil[J]. Fuel, 2024, 360: 130535. |
| [33] | Wang C H, Gao L Y, Liu M H, et al. Viscosity reduction mechanism of functionalized silica nanoparticles in heavy oil-water system[J]. Fuel Processing Technology, 2022, 237: 107454. |
| [34] | Guan D, Feng S, Zhang L Z, et al. Mesoscale simulation for heavy petroleum system using structural unit and dissipative particle dynamics (SU-DPD) frameworks[J]. Energy & Fuels, 2019, 33(2): 1049-1060. |
| [35] | Zhang L Z, Chen P C, Pan S, et al. Structure-dynamic function relations of asphaltenes[J]. Energy & Fuels, 2021, 35(17): 13610-13632. |
| [36] | Ahmadi M, Chen Z X. Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions[J]. Fuel, 2021, 288: 119729. |
| [37] | Ahmadi M, Chen Z X. Molecular interactions between asphaltene and surfactants in a hydrocarbon solvent: application to asphaltene dispersion[J]. Symmetry, 2020, 12(11): 1767. |
| [38] | 李熠宇. 海上稠油降黏剂分子模拟及合成研究[D]. 青岛: 中国石油大学(华东), 2020. |
| Li Y Y. Molecular simulation and synthesis of viscosity reducer for heavy marine oils[D]. Qingdao: China University of Petroleum (East China), 2020. | |
| [39] | Li Z, Zhu B J, Han T K, et al. Different mechanisms of two oil-soluble additives to reduce heavy crude oil viscosity[J]. Journal of Molecular Liquids, 2024, 414: 126196. |
| [1] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [2] | 吴馨, 龚建英, 李祥宇, 王宇涛, 杨小龙, 蒋震. 超声波激励疏水表面液滴运动的实验研究[J]. 化工学报, 2025, 76(S1): 133-139. |
| [3] | 赵美, 甘雨欣, 赵绍磊, 杨令, 王亭杰. 硅橡胶用纳米二氧化硅表面有机修饰及补强机理研究进展[J]. 化工学报, 2025, 76(7): 3125-3136. |
| [4] | 郭铮铮, 赵一丹, 王辅强, 裴璐, 靳彦岭, 任芳, 任鹏刚. 异质结构MoS2/RGO/NiFe2O4复合材料的构筑及电磁波吸收性能研究[J]. 化工学报, 2025, 76(7): 3719-3732. |
| [5] | 李姿睿, 齐凯, 王军, 夏国栋. 基于Janus纳米通道的脱盐过程分子动力学模拟研究[J]. 化工学报, 2025, 76(7): 3531-3538. |
| [6] | 卢煦旸, 徐强, 康浩鹏, 史健, 曹泽水, 郭烈锦. 化学链制氢系统中磁铁矿氧载体的CO还原特性研究[J]. 化工学报, 2025, 76(7): 3286-3294. |
| [7] | 徐鹏国, 孟子衡, 朱干宇, 李会泉, 王晨晔, 孙振华, 田国才. 粗碳酸锂CO2微气泡深度碳化工艺与动力学研究[J]. 化工学报, 2025, 76(7): 3325-3338. |
| [8] | 吴天灏, 叶霆威, 林延, 黄振. 生物质化学链气化原位补氢制H2/CO可控合成气[J]. 化工学报, 2025, 76(7): 3498-3508. |
| [9] | 王珺仪, 夏章讯, 景粉宁, 王素力. 基于重整气的高温聚合物电解质膜燃料电池电化学阻抗谱弛豫时间分布研究[J]. 化工学报, 2025, 76(7): 3509-3520. |
| [10] | 刘峰, 韩春硕, 张益, 刘彦成, 郁林军, 申家伟, 高晓泉, 杨凯. 高温高盐环境下单烃链和双烃链表面活性剂对油水界面性质影响的微观机理研究[J]. 化工学报, 2025, 76(6): 2939-2957. |
| [11] | 赵清萍, 张敏, 赵辉, 王刚, 邱永福. 乙烯氢甲酯化合成丙酸甲酯的氢键作用机制及反应动力学研究[J]. 化工学报, 2025, 76(6): 2701-2713. |
| [12] | 何军, 李勇, 赵楠, 何孝军. 碳负载硒掺杂硫化钴在锂硫电池中的性能研究[J]. 化工学报, 2025, 76(6): 2995-3008. |
| [13] | 麦棹铭, 武颖韬, 王维, 穆海宝, 黄佐华, 汤成龙. 正十二烷-甲烷双燃料非线性着火特性及稀释气体效应研究[J]. 化工学报, 2025, 76(6): 3115-3124. |
| [14] | 郭乃胜, 朱小波, 王双, 陈平, 褚召阳, 王志臣. 聚氨酯改性沥青高低温性能及影响因素的研究进展[J]. 化工学报, 2025, 76(6): 2505-2523. |
| [15] | 梁碧麟, 余倩, 贾思琦, 李芳, 李其明. Ni-MOF-74金属有机框架膜的结构调变及气体分离性能研究[J]. 化工学报, 2025, 76(6): 2714-2721. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号