化工学报 ›› 2025, Vol. 76 ›› Issue (8): 4108-4118.DOI: 10.11949/0438-1157.20250150
刘世昌1(
), 李一白1, 王靖1,2(
), 刘永忠1,2(
)
收稿日期:2025-02-18
修回日期:2025-04-17
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
王靖,刘永忠
作者简介:刘世昌(2000—),男,硕士研究生,dcc626@stu.xjtu.edu.cn
基金资助:
Shichang LIU1(
), Yibai LI1, Jing WANG1,2(
), Yongzhong LIU1,2(
)
Received:2025-02-18
Revised:2025-04-17
Online:2025-08-25
Published:2025-09-17
Contact:
Jing WANG, Yongzhong LIU
摘要:
氢气驱动的电化学捕碳系统(HECCS)是一种新型的低浓度CO2捕集与分离方法。受大面积膜制备、膜性能和电极性能等限制,HECCS系统的单模块捕碳能力有限。为了提高HECCS系统捕碳性能和系统经济性,本文提出HECCS系统的模块化设计与优化方法,在分析HECCS系统单模块操作性能基础上,研究了模块化HECCS系统的捕碳策略及优化操作方法,阐明了模块化HECCS系统结构特性及单元模块之间的协调匹配特性。研究表明,在特定的低浓度CO2捕获场景中,在模块化捕碳系统中,不同单元模块组合方式的HECCS模块化系统结构显著影响捕碳性能和经济性。在相同操作条件下,串联结构比并联结构具有更优的除碳效果,多级结构有助于降低系统氢气消耗;HECCS系统的最优级数受进出口CO2浓度、氢气价格和HECCS模块价格影响显著,取决于系统操作费用和投资费用权衡。本研究可为模块化HECCS系统性能优化和经济性提升提供优化设计方法。
中图分类号:
刘世昌, 李一白, 王靖, 刘永忠. 氢气驱动电化学捕碳系统的模块化设计与优化[J]. 化工学报, 2025, 76(8): 4108-4118.
Shichang LIU, Yibai LI, Jing WANG, Yongzhong LIU. Modular design and optimization of hydrogen-driven electrochemical CO2 capture systems[J]. CIESC Journal, 2025, 76(8): 4108-4118.
| 性能 | RMSE | R2 | 拟合范围 | |||
|---|---|---|---|---|---|---|
| Model A | Model B | Model A | Model B | Model A | Model B | |
| 除碳率 | 2.07% | 3.95% | 0.9706 | 0.9607 | 0~1 | 0~1 |
| CO2通量/( | 0.34% | 0.61% | 0.9968 | 0.9905 | 0~0.4 | 0~0.4 |
| 电子效率 | 1.23% | 3.12% | 0.9847 | 0.9730 | 0~1 | 0~1 |
表1 模型A和模型B的验证结果
Table 1 Validation of the model A and B
| 性能 | RMSE | R2 | 拟合范围 | |||
|---|---|---|---|---|---|---|
| Model A | Model B | Model A | Model B | Model A | Model B | |
| 除碳率 | 2.07% | 3.95% | 0.9706 | 0.9607 | 0~1 | 0~1 |
| CO2通量/( | 0.34% | 0.61% | 0.9968 | 0.9905 | 0~0.4 | 0~0.4 |
| 电子效率 | 1.23% | 3.12% | 0.9847 | 0.9730 | 0~1 | 0~1 |
| 性能 | Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 |
|---|---|---|---|---|---|---|
| 出口CO2浓度/% | 0.14 0.032 | 0.081 | 0.14 0.0055 0.0055 | 0.081 0.081 0.0085 | 0.14 0.032 0.0010 | 0.022 |
| 除碳率 | 0.52 0.78 | 0.73 0.73 | 0.52 0.96 0.96 | 0.73 0.73 0.90 | 0.52 0.78 0.97 | 0.93 0.93 0.93 |
| CO2通量/( | 0.22 0.16 | 0.15 0.15 | 0.22 0.10 0.10 | 0.15 0.15 0.10 | 0.22 0.16 0.058 | 0.13 0.13 0.13 |
| 电子效率 | 0.67 0.47 | 0.50 0.50 | 0.67 0.31 0.31 | 0.50 0.50 0.31 | 0.67 0.47 0.17 | 0.40 0.40 0.40 |
| 总氢消耗/(mg/h) | 15.42 15.58 | 14.34 14.34 | 15.42 14.70 14.70 | 14.34 14.34 15.29 | 15.42 15.58 11.84 | 15.26 15.26 15.26 |
| 单位CO2耗氢/( | 0.040 | 0.045 | 0.053 | 0.052 | 0.049 | 0.057 |
表2 HECCS系统串并联结构下优化结果
Table 2 Comparison of optimization results under series and parallel structures of HECCS
| 性能 | Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 |
|---|---|---|---|---|---|---|
| 出口CO2浓度/% | 0.14 0.032 | 0.081 | 0.14 0.0055 0.0055 | 0.081 0.081 0.0085 | 0.14 0.032 0.0010 | 0.022 |
| 除碳率 | 0.52 0.78 | 0.73 0.73 | 0.52 0.96 0.96 | 0.73 0.73 0.90 | 0.52 0.78 0.97 | 0.93 0.93 0.93 |
| CO2通量/( | 0.22 0.16 | 0.15 0.15 | 0.22 0.10 0.10 | 0.15 0.15 0.10 | 0.22 0.16 0.058 | 0.13 0.13 0.13 |
| 电子效率 | 0.67 0.47 | 0.50 0.50 | 0.67 0.31 0.31 | 0.50 0.50 0.31 | 0.67 0.47 0.17 | 0.40 0.40 0.40 |
| 总氢消耗/(mg/h) | 15.42 15.58 | 14.34 14.34 | 15.42 14.70 14.70 | 14.34 14.34 15.29 | 15.42 15.58 11.84 | 15.26 15.26 15.26 |
| 单位CO2耗氢/( | 0.040 | 0.045 | 0.053 | 0.052 | 0.049 | 0.057 |
| 场景 | 级数 | 操作参数 | 出口CO2浓度/% | 平均电子效率 | 总耗氢量/(g/h) | |
|---|---|---|---|---|---|---|
| 电流密度/(mA/cm2) | 温度/℃ | |||||
| S1 | 1 | 24.8 | 60 | 0.12 | 0.62 | 45.83 |
| 2 | 10.7/10.0 | 60/60 | 0.12 | 0.74 | 38.21 | |
| S2 | 2 | 17.7/14.8 | 60/60 | 0.20 | 0.78 | 36.17 |
| 3 | 10.0/10.2/10.0 | 60/60/60 | 0.20 | 0.85 | 33.60 | |
表3 典型场景下的最优操作参数和耗氢量
Table 3 Optimal operating parameters and hydrogen consumption in typical scenarios
| 场景 | 级数 | 操作参数 | 出口CO2浓度/% | 平均电子效率 | 总耗氢量/(g/h) | |
|---|---|---|---|---|---|---|
| 电流密度/(mA/cm2) | 温度/℃ | |||||
| S1 | 1 | 24.8 | 60 | 0.12 | 0.62 | 45.83 |
| 2 | 10.7/10.0 | 60/60 | 0.12 | 0.74 | 38.21 | |
| S2 | 2 | 17.7/14.8 | 60/60 | 0.20 | 0.78 | 36.17 |
| 3 | 10.0/10.2/10.0 | 60/60/60 | 0.20 | 0.85 | 33.60 | |
| 场景 | 级数 | 电流密度/(mA/cm2) | 末级出口CO2浓度/% | 投资成本/元 | 操作成本/元 | 总成本/元 | 标准化成本/(元/ |
|---|---|---|---|---|---|---|---|
| S1 | 1 | 24.8 | 0.12 | 1780.71 | 14050.75 | 15831.46 | 1446.51 |
| 2 | 10.7/10.0 | 0.12 | 3561.43 | 11711.87 | 15273.30 | 1393.40 | |
| 3 | 10.0/10.0/10.0 | 0.053 | 5342.14 | 17355.62 | 22697.76 | 1508.25 | |
| 4 | 10.0/10.0/10.0/10.0 | 0.0072 | 7123.57 | 23295.12 | 30418.69 | 1708.96 | |
| S2 | 2 | 17.7/14.8 | 0.20 | 2140.71 | 11099.38 | 13240.09 | 1207.33 |
| 3 | 10.0/10.2/10.0 | 0.20 | 3210.71 | 10297.87 | 13508.58 | 1233.41 | |
| 4 | 10.0/10.0/10.0/10.0 | 0.12 | 4281.43 | 13632.51 | 17913.94 | 1288.70 | |
| 5 | 10.0/10.0/10.0/10.0/10.0 | 0.049 | 5351.43 | 17262.87 | 22614.30 | 1371.60 |
表4 场景一和场景二下不同级数对HECCS系统经济性影响
Table 4 Economics of HECCS under different stages in Scenario 1 and Scenario 2
| 场景 | 级数 | 电流密度/(mA/cm2) | 末级出口CO2浓度/% | 投资成本/元 | 操作成本/元 | 总成本/元 | 标准化成本/(元/ |
|---|---|---|---|---|---|---|---|
| S1 | 1 | 24.8 | 0.12 | 1780.71 | 14050.75 | 15831.46 | 1446.51 |
| 2 | 10.7/10.0 | 0.12 | 3561.43 | 11711.87 | 15273.30 | 1393.40 | |
| 3 | 10.0/10.0/10.0 | 0.053 | 5342.14 | 17355.62 | 22697.76 | 1508.25 | |
| 4 | 10.0/10.0/10.0/10.0 | 0.0072 | 7123.57 | 23295.12 | 30418.69 | 1708.96 | |
| S2 | 2 | 17.7/14.8 | 0.20 | 2140.71 | 11099.38 | 13240.09 | 1207.33 |
| 3 | 10.0/10.2/10.0 | 0.20 | 3210.71 | 10297.87 | 13508.58 | 1233.41 | |
| 4 | 10.0/10.0/10.0/10.0 | 0.12 | 4281.43 | 13632.51 | 17913.94 | 1288.70 | |
| 5 | 10.0/10.0/10.0/10.0/10.0 | 0.049 | 5351.43 | 17262.87 | 22614.30 | 1371.60 |
| [1] | Huang P, Fu J L, Qiu D Y, et al. Experimental and kinetic study on the cyclic removal of low concentration CO2 by amine adsorbents in confined spaces[J]. Process Safety and Environmental Protection, 2023, 180: 417-427. |
| [2] | 李俊华, 焦桂萍, 邓辉, 等. 潜艇大气环境控制关键技术研究现状与展望[J]. 中国舰船研究, 2022, 17(5): 116-124. |
| Li J H, Jiao G P, Deng H, et al. Development and prospects of key technology for submarine atmospheric environment control[J]. Chinese Journal of Ship Research, 2022, 17(5): 116-124. | |
| [3] | 徐新宏, 江璐, 方晶晶, 等. AIP潜艇长航期间舱室环境中空气污染物分析[J]. 舰船科学技术, 2019, 41(21): 94-99. |
| Xu X H, Jiang L, Fang J J, et al. Analysis of air pollutants in an air independent propulsion submarine[J]. Ship Science and Technology, 2019, 41(21): 94-99. | |
| [4] | Georgescu M R, Meslem A, Nastase I. Accumulation and spatial distribution of CO2 in the astronaut's crew quarters on the International Space Station[J]. Building and Environment, 2020, 185: 107278. |
| [5] | Zhang Z J, Jin T, Wu H W, et al. Experimental investigation on environmental control of a 50-person mine refuge chamber[J]. Building and Environment, 2022, 210: 108667. |
| [6] | Jacobson T A, Kler J S, Hernke M T, et al. Direct human health risks of increased atmospheric carbon dioxide[J]. Nature Sustainability, 2019, 2: 691-701. |
| [7] | 王钰, 乔江波, 李灿, 等. 核潜艇舱室一体化空气再生系统技术设想[J]. 舰船科学技术, 2022, 44(1): 78-81. |
| Wang Y, Qiao J B, Li C, et al. The technical concept of integrated air regeneration system for nuclear submarine[J]. Ship Science and Technology, 2022, 44(1): 78-81. | |
| [8] | Bisotti F, Hoff K A, Mathisen A, et al. Direct air capture (DAC) deployment: a review of the industrial deployment[J]. Chemical Engineering Science, 2024, 283: 119416. |
| [9] | Sodiq A, Abdullatif Y, Aissa B, et al. A review on progress made in direct air capture of CO2 [J]. Environmental Technology & Innovation, 2023, 29: 102991. |
| [10] | Bui M, Adjiman C S, Bardow A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
| [11] | Brethomé F M, Williams N J, Seipp C A, et al. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power[J]. Nature Energy, 2018, 3: 553-559. |
| [12] | Lee J W, Ahn H, Kim S, et al. Low-concentration CO2 capture system with liquid-like adsorbent based on monoethanolamine for low energy consumption[J]. Journal of Cleaner Production, 2023, 390: 136141. |
| [13] | Küng L, Aeschlimann S, Charalambous C, et al. A roadmap for achieving scalable, safe, and low-cost direct air carbon capture and storage[J]. Energy & Environmental Science, 2023, 16(10): 4280-4304. |
| [14] | 赵俊德, 周爱国, 陈彦霖, 等. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| Zhao J D, Zhou A G, Chen Y L, et al. Energy consumption of adsorption CO2 direct air capture[J]. CIESC Journal, 2025, 76(4): 1375-1390. | |
| [15] | Garcia J A, Villen-Guzman M, Rodriguez-Maroto J M, et al. Technical analysis of CO2 capture pathways and technologies[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108470. |
| [16] | Baek H M. Possibility of military service-regeneration of LiOH for submarines and improvement in CO2 scrubbing performance of LiOH canisters[J]. Journal of Advanced Marine Engineering and Technology, 2022, 46(3): 115-121. |
| [17] | Panda D, Kulkarni V, Singh S K. Evaluation of amine-based solid adsorbents for direct air capture: a critical review[J]. Reaction Chemistry & Engineering, 2023, 8(1): 10-40. |
| [18] | An K J, Li K, Yang C M, et al. A comprehensive review on regeneration strategies for direct air capture[J]. Journal of CO2 Utilization, 2023, 76: 102587. |
| [19] | Bouaboula H, Chaouki J, Belmabkhout Y, et al. Comparative review of direct air capture technologies: from technical, commercial, economic, and environmental aspects[J]. Chemical Engineering Journal, 2024, 484: 149411. |
| [20] | Zito A M, Clarke L E, Barlow J M, et al. Electrochemical carbon dioxide capture and concentration[J]. Chemical Reviews, 2023, 123(13): 8069-8098. |
| [21] | Fasihi M, Efimova O, Breyer C. Techno-economic assessment of CO2 direct air capture plants[J]. Journal of Cleaner Production, 2019, 224: 957-980. |
| [22] | Li Y, Yuan Y P, Li C F, et al. Human responses to high air temperature, relative humidity and carbon dioxide concentration in underground refuge chamber[J]. Building and Environment, 2018, 131: 53-62. |
| [23] | Du Y, Gai W M, Jin L Z. A novel and green CO2 adsorbent developed with high adsorption properties in a coal mine refuge chamber[J]. Journal of Cleaner Production, 2018, 176: 216-229. |
| [24] | Matz S, Setzler B P, Weiss C M, et al. Demonstration of electrochemically-driven CO2 separation using hydroxide exchange membranes[J]. Journal of the Electrochemical Society, 2021, 168(1): 014501. |
| [25] | Shi L, Zhao Y, Matz S, et al. A shorted membrane electrochemical cell powered by hydrogen to remove CO2 from the air feed of hydroxide exchange membrane fuel cells[J]. Nature Energy, 2022, 7: 238-247. |
| [26] | Rahimi M, Khurram A, Hatton T A, et al. Electrochemical carbon capture processes for mitigation of CO2 emissions[J]. Chemical Society Reviews, 2022, 51(20): 8676-8695. |
| [27] | Matz S, Shi L, Zhao Y, et al. Hydrogen-powered electrochemically-driven CO2 removal from air containing 400 to 5000 ppm CO2 [J]. Journal of the Electrochemical Society, 2022, 169(7): 073503. |
| [28] | Sharifian R, Wagterveld R M, Digdaya I A, et al. Electrochemical carbon dioxide capture to close the carbon cycle[J]. Energy & Environmental Science, 2021, 14(2): 781-814. |
| [29] | Gubler L. Wire-free electrochemical CO2 scrubbing[J]. Nature Energy, 2022, 7: 216-217. |
| [30] | Abbasi R, Setzler B P, Yan Y S. Material and system development needs for widespread deployment of hydroxide exchange membrane fuel cells in light-duty vehicles[J]. Energy & Environmental Science, 2023, 16(10): 4404-4422. |
| [31] | 彭文波, 张诗, 李志印, 等. 回收液氧冷量冻结清除二氧化碳实现AIP潜艇节能增效[J]. 中国舰船研究, 2024, 19(5): 231-237. |
| Peng W B, Zhang S, Li Z Y, et al. Recycle cold energy of liquid oxygen to clear carbon dioxide for AIP submarine[J]. Chinese Journal of Ship Research, 2024, 19(5): 231-237. | |
| [32] | Tang Y, Li Y M. Comparative analysis of the levelized cost of hydrogen production from fossil energy and renewable energy in China[J]. Energy for Sustainable Development, 2024, 83: 101588. |
| [1] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [2] | 石一帆, 柯钢, 陈浩, 黄孝胜, 叶芳, 李成娇, 郭航. 大型高低温环境实验室温度控制仿真[J]. 化工学报, 2025, 76(S1): 268-280. |
| [3] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [4] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [5] | 沙鑫权, 胡然, 丁磊, 蒋珍华, 吴亦农. 空间用单机两级有阀线性压缩机研制及测试[J]. 化工学报, 2025, 76(S1): 114-122. |
| [6] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [7] | 李科, 谢昊琳, 文键. 耦合多重蒸气冷却屏的液氢储罐绝热性能的多目标遗传算法优化[J]. 化工学报, 2025, 76(8): 4217-4227. |
| [8] | 范夏雨, 孙建辰, 李可莹, 姚馨雅, 商辉. 机器学习驱动液态有机储氢技术的系统优化[J]. 化工学报, 2025, 76(8): 3805-3821. |
| [9] | 赫亚庆, 王维庆, 池映天, 李佳蓉, 王海云, 张新燕, 刘博文. 考虑不均匀性的SOEC电堆3D建模优化分析[J]. 化工学报, 2025, 76(8): 4129-4144. |
| [10] | 刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893. |
| [11] | 陈宇航, 陈金国, 陈炜毅, 王康, 郑昊, 韩昌亮. 沉浸式气化器烟气分布器布气性能与多目标参数优化[J]. 化工学报, 2025, 76(7): 3274-3285. |
| [12] | 王涛, 李光明, 胡秋霞, 徐静. 基于时序演变粒子群算法的双色注射产品翘曲工艺优化[J]. 化工学报, 2025, 76(7): 3403-3415. |
| [13] | 陈培强, 郑群, 姜玉廷, 熊春华, 陈今茂, 王旭东, 黄龙, 阮曼, 徐万里. 电液流量及电流密度对海水激活电池输出特性的影响[J]. 化工学报, 2025, 76(7): 3235-3245. |
| [14] | 李欣然, 常龙娇, 罗绍华, 李永兵, 杨瑞芬, 侯增磊, 邹杰. Ho掺杂诱导NCM622局域电子重构抑制阳离子混排的改性机制研究[J]. 化工学报, 2025, 76(7): 3733-3741. |
| [15] | 王孝宇, 戴贵龙, 邓树坤, 龚凌诸. Laguerre-Voronoi开孔泡沫流动-传热综合性能孔隙尺度模拟[J]. 化工学报, 2025, 76(7): 3259-3273. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号