化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4933-4943.DOI: 10.11949/0438-1157.20250074
刘璐1,2(
), 王文玥1, 王腾1,2(
), 王太1,2, 董新宇1,2, 汤建成3, 王少恒4
收稿日期:2025-01-17
修回日期:2025-06-29
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
王腾
作者简介:刘璐(1984—),女,博士,教授,luliu@ncepu.edu.cn
基金资助:
Lu LIU1,2(
), Wenyue WANG1, Teng WANG1,2(
), Tai WANG1,2, Xinyu DONG1,2, Jiancheng TANG3, Shaoheng WANG4
Received:2025-01-17
Revised:2025-06-29
Online:2025-09-25
Published:2025-10-23
Contact:
Teng WANG
摘要:
为降低氢液化过程的比能耗并提高深冷阶段的冷能利用率,提出一种新型的基于双混合工质深冷的级联氢液化工艺。该工艺使用混合工质预冷,通过级联的双混合工质逆布雷顿循环深冷。工艺的液氢产量为300 t/d,通过六级正仲氢转化后,产品仲氢浓度大于99%。利用Aspen HYSYS软件对工艺进行模拟,并在Matlab中调用遗传算法以比能耗为目标函数对工艺的关键参数进行优化。基于优化结果进行㶲分析和换热器性能分析,结果表明:优化后该工艺的比能耗为6.07 kWh/kg,㶲效率为53.01%。各级换热器的冷热流复合曲线更加匹配,最小换热温差均在1.0~1.5℃。该工艺设计可为大规模氢液化工艺的优化和改进提供参考。
中图分类号:
刘璐, 王文玥, 王腾, 王太, 董新宇, 汤建成, 王少恒. 基于双混合工质深冷的氢液化工艺优化与分析[J]. 化工学报, 2025, 76(9): 4933-4943.
Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling[J]. CIESC Journal, 2025, 76(9): 4933-4943.
| 组分/%(mol) | MR1循环 | MR2循环 | MR3循环 |
|---|---|---|---|
| CH4 | 17 | — | — |
| C2H4 | 16 | — | — |
| C2H6 | 7 | — | — |
| C3H8 | 18 | — | — |
| n-C4H10 | 2 | — | — |
| n-C5H12 | 15 | — | — |
| H2 | 1 | 87 | 18 |
| N2 | 16 | — | — |
| R-14 | 8 | — | — |
| He | — | — | 81 |
| Ne | — | 13 | 1 |
表1 混合工质组成
Table 1 Composition of mixed refrigerant
| 组分/%(mol) | MR1循环 | MR2循环 | MR3循环 |
|---|---|---|---|
| CH4 | 17 | — | — |
| C2H4 | 16 | — | — |
| C2H6 | 7 | — | — |
| C3H8 | 18 | — | — |
| n-C4H10 | 2 | — | — |
| n-C5H12 | 15 | — | — |
| H2 | 1 | 87 | 18 |
| N2 | 16 | — | — |
| R-14 | 8 | — | — |
| He | — | — | 81 |
| Ne | — | 13 | 1 |
| 参数 | 数值 |
|---|---|
| 种群大小 | 400 |
| 最大进化代数 | 600 |
| 交叉概率 | 0.8 |
| 变异率 | 0.2 |
表2 遗传算法参数设置
Table 2 The setting parameters of genetic algorithms
| 参数 | 数值 |
|---|---|
| 种群大小 | 400 |
| 最大进化代数 | 600 |
| 交叉概率 | 0.8 |
| 变异率 | 0.2 |
| 决策变量 | 优化前 | 优化后 | 决策变量 | 优化前 | 优化后 |
|---|---|---|---|---|---|
| pPR1/kPa | 140 | 199.5 | mPR1/(kg/s) | 91.5 | 102.70 |
| pPR2/kPa | 600 | 647.5 | mN9a/(kg/s) | 11.8 | 11.64 |
| pPR5a/kPa | 1600 | 1508.0 | mN10a/(kg/s) | 15.8 | 14.92 |
| pN1/kPa | 104 | 108.7 | mM10a/(kg/s) | 17.6 | 21.23 |
| pN2/kPa | 240 | 225.7 | mM11a/(kg/s) | 8.1 | 12.90 |
| pN4/kPa | 470 | 492.3 | TM10c/℃ | -248.1 | -246.7 |
| pM1/kPa | 105 | 120.2 | TM11c/℃ | -254.0 | -253.3 |
| pM2/kPa | 250 | 238.4 | TN9c/℃ | -219.5 | -219.0 |
| pM4/kPa | 460 | 474.5 | TN10c/℃ | -236.5 | -235.7 |
表3 工艺决策变量优化前后对比
Table 3 Comparison of decision variables before and after optimization
| 决策变量 | 优化前 | 优化后 | 决策变量 | 优化前 | 优化后 |
|---|---|---|---|---|---|
| pPR1/kPa | 140 | 199.5 | mPR1/(kg/s) | 91.5 | 102.70 |
| pPR2/kPa | 600 | 647.5 | mN9a/(kg/s) | 11.8 | 11.64 |
| pPR5a/kPa | 1600 | 1508.0 | mN10a/(kg/s) | 15.8 | 14.92 |
| pN1/kPa | 104 | 108.7 | mM10a/(kg/s) | 17.6 | 21.23 |
| pN2/kPa | 240 | 225.7 | mM11a/(kg/s) | 8.1 | 12.90 |
| pN4/kPa | 470 | 492.3 | TM10c/℃ | -248.1 | -246.7 |
| pM1/kPa | 105 | 120.2 | TM11c/℃ | -254.0 | -253.3 |
| pM2/kPa | 250 | 238.4 | TN9c/℃ | -219.5 | -219.0 |
| pM4/kPa | 460 | 474.5 | TN10c/℃ | -236.5 | -235.7 |
| 设备 | 功率/kW | 比能耗/(kWh/kg) | 设备 | 功率/kW | 比能耗/(kWh/kg) | ||
|---|---|---|---|---|---|---|---|
| 优化前 | 优化后 | 优化后 | 优化前 | 优化后 | 优化后 | ||
| Com-1 | 7019 | 8609 | 0.69 | Exp-1 | 1771 | 1778 | 0.14 |
| Com-2 | 7318 | 5423 | 0.44 | Exp-2 | 1591 | 1548 | 0.12 |
| Com-3 | 15910 | 13630 | 1.10 | Exp-3 | 1816 | 1678 | 0.14 |
| Com-4 | 13450 | 14700 | 1.19 | Exp-4 | 766 | 754 | 0.06 |
| Com-5 | 19430 | 19100 | 1.54 | WNet | 78773 | 75094 | 6.07 |
| Com-6 | 21590 | 19390 | 1.57 | COP | 0.198 | 0.208 | — |
表4 优化前后各设备的比能耗和输出功率
Table 4 The specific energy consumption and output power of each device before and after optimization
| 设备 | 功率/kW | 比能耗/(kWh/kg) | 设备 | 功率/kW | 比能耗/(kWh/kg) | ||
|---|---|---|---|---|---|---|---|
| 优化前 | 优化后 | 优化后 | 优化前 | 优化后 | 优化后 | ||
| Com-1 | 7019 | 8609 | 0.69 | Exp-1 | 1771 | 1778 | 0.14 |
| Com-2 | 7318 | 5423 | 0.44 | Exp-2 | 1591 | 1548 | 0.12 |
| Com-3 | 15910 | 13630 | 1.10 | Exp-3 | 1816 | 1678 | 0.14 |
| Com-4 | 13450 | 14700 | 1.19 | Exp-4 | 766 | 754 | 0.06 |
| Com-5 | 19430 | 19100 | 1.54 | WNet | 78773 | 75094 | 6.07 |
| Com-6 | 21590 | 19390 | 1.57 | COP | 0.198 | 0.208 | — |
| 设备 | 㶲平衡方程 |
|---|---|
| 压缩机 | |
| 换热器 | |
| 冷却器 | |
| J-T 阀 | |
| 膨胀机 |
表5 主要设备㶲平衡方程
Table 5 Exergy balance equation of main equipment
| 设备 | 㶲平衡方程 |
|---|---|
| 压缩机 | |
| 换热器 | |
| 冷却器 | |
| J-T 阀 | |
| 膨胀机 |
| 产量/(t/d) | 深冷阶段制冷方式 | 是否级联 | 正仲氢转化类型 | 比能耗/(kWh/kg) | 㶲效率/% | 文献 |
|---|---|---|---|---|---|---|
| 90 | 单混合 | 否 | — | 6.47 | 45.50 | [ |
| 100 | 多级联 | 否 | 绝热 | 7.69 | 39.50 | [ |
| 300 | 双混合 | 否 | 等温 | 5.74 | 55.3 | [ |
| 300 | 单混合 | 是 | 绝热 | 5.66 | 52.77 | [ |
| 300 | 单混合 | 否 | 绝热 | 6.43 | — | [ |
| 300 | 双混合 | 是 | 绝热 | 6.07 | 53.01 | 本文 |
表6 氢液化工艺性能比较
Table 6 Performance comparison of hydrogen liquefaction processes
| 产量/(t/d) | 深冷阶段制冷方式 | 是否级联 | 正仲氢转化类型 | 比能耗/(kWh/kg) | 㶲效率/% | 文献 |
|---|---|---|---|---|---|---|
| 90 | 单混合 | 否 | — | 6.47 | 45.50 | [ |
| 100 | 多级联 | 否 | 绝热 | 7.69 | 39.50 | [ |
| 300 | 双混合 | 否 | 等温 | 5.74 | 55.3 | [ |
| 300 | 单混合 | 是 | 绝热 | 5.66 | 52.77 | [ |
| 300 | 单混合 | 否 | 绝热 | 6.43 | — | [ |
| 300 | 双混合 | 是 | 绝热 | 6.07 | 53.01 | 本文 |
| [1] | Yuksel Y E, Ozturk M, Dincer I. Analysis and assessment of a novel hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11429-11438. |
| [2] | Won W, Kwon H, Han J H, et al. Design and operation of renewable energy sources based hydrogen supply system: technology integration and optimization[J]. Renewable Energy, 2017, 103: 226-238. |
| [3] | Uyar T S, Beşikci D. Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2453-2456. |
| [4] | Aasadnia M, Mehrpooya M. Large-scale liquid hydrogen production methods and approaches: a review[J]. Applied Energy, 2018, 212: 57-83. |
| [5] | Al Ghafri S Z, Munro S, Cardella U, et al. Hydrogen liquefaction: a review of the fundamental physics, engineering practice and future opportunities[J]. Energy & Environmental Science, 2022, 15(7): 2690-2731. |
| [6] | Hoffman P. Hydrogen: the optimum chemical fuel[J]. Applied Energy, 1994, 47(2/3): 183-199. |
| [7] | Aziz M. Liquid hydrogen: a review on liquefaction, storage, transportation, and safety[J]. Energies, 2021, 14(18): 5917. |
| [8] | 殷靓, 巨永林. 氢液化流程设计和优化方法研究进展[J]. 制冷学报, 2020, 41(3): 1-10. |
| Yin L, Ju Y L. Review on researches and developments of the design and optimization for hydrogen liquefaction processes[J]. Journal of Refrigeration, 2020, 41(3): 1-10. | |
| [9] | Riaz A, Qyyum M A, Min S, et al. Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: energy and exergy perspectives[J]. Applied Energy, 2021, 301: 117471. |
| [10] | Sleiti A K, Al-Ammari W A, Ghani S, et al. A novel hydrogen liquefaction process using dual mixed cryogenic refrigeration system: energy, exergy, and economic analysis[J]. International Journal of Hydrogen Energy, 2024, 56: 1324-1339. |
| [11] | Bracha M, Lorenz G, Patzelt A, et al. Large-scale hydrogen liquefaction in Germany[J]. International Journal of Hydrogen Energy, 1994, 19(1): 53-59. |
| [12] | Naquash A, Qyyum M A, Min S, et al. Carbon-dioxide-precooled hydrogen liquefaction process: an innovative approach for performance enhancement—energy, exergy, and economic perspectives[J]. Energy Conversion and Management, 2022, 251: 114947. |
| [13] | 唐璐, 邱利民, 姚蕾, 等. 氢液化系统的研究进展与展望[J]. 制冷学报, 2011, 32(6): 1-8. |
| Tang L, Qiu L M, Yao L, et al. Review on research and developments of hydrogen liquefaction systems[J]. Journal of Refrigeration, 2011, 32(6): 1-8. | |
| [14] | 蔡伟华, 宇世鹏, 梁丽, 等. 液氮预冷双路循环氢液化系统优化与分析[J]. 工程热物理学报, 2024, 45(11): 3253-3261. |
| Cai W H, Yu S P, Liang L, et al. Optimization and analysis of liquid nitrogen precooling dual cycle hydrogen liquefaction system[J]. Journal of Engineering Thermophysics, 2024, 45(11): 3253-3261. | |
| [15] | Krasae-in S, Stang J H, Neksa P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4524-4533. |
| [16] | 王昊成, 杨敬瑶, 董学强, 等. 10 t/d级氢液化装置流程热力分析与优化[J]. 化工学报, 2022, 73(11): 5106-5117. |
| Wang H C, Yang J Y, Dong X Q, et al. Thermodynamic analysis and optimization of 10 t/d hydrogen liquefaction process[J]. CIESC Journal, 2022, 73(11): 5106-5117. | |
| [17] | 唐璐. 基于液氮预冷的氢液化流程设计及系统模拟[D]. 杭州: 浙江大学, 2012. |
| Tang L. Design and system simulation of hydrogen liquefaction process based on liquid nitrogen precooling[D]. Hangzhou: Zhejiang University, 2012. | |
| [18] | Yin L, Ju Y L. Review on the design and optimization of hydrogen liquefaction processes[J]. Frontiers in Energy, 2020, 14(3): 530-544. |
| [19] | Aasadnia M, Mehrpooya M. Conceptual design and analysis of a novel process for hydrogen liquefaction assisted by absorption precooling system[J]. Journal of Cleaner Production, 2018, 205: 565-588. |
| [20] | 王国聪, 徐则林, 多志丽, 等. 混合制冷剂氢气液化工艺优化[J]. 东北电力大学学报, 2021, 41(6): 61-70. |
| Wang G C, Xu Z L, Duo Z L, et al. Optimization of mixed refrigerant hydrogen liquefaction process[J]. Journal of Northeast Electric Power University, 2021, 41(6): 61-70. | |
| [21] | 孙恒, 徐嘉明, 王超, 等. LNG预冷的新型氢液化工艺设计与优化[J]. 低碳化学与化工, 2023, 48(6): 134-141, 149. |
| Sun H, Xu J M, Wang C, et al. Design and optimization of novel hydrogen liquefaction process with LNG pre-cooling[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6): 134-141, 149. | |
| [22] | Quack H. Conceptual design of a high efficiency large capacity hydrogen liquefier[C]//Advances in Cryogenic Engineering: Proceedings of the Cryogenic Engineering Conference. AIP, 2002: 255-263. |
| [23] | Sadaghiani M S, Mehrpooya M. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration[J]. International Journal of Hydrogen Energy, 2017, 42(9): 6033-6050. |
| [24] | Qyyum M A, Ahmed F, Nawaz A, et al. Teaching-learning self-study approach for optimal retrofitting of dual mixed refrigerant LNG process: energy and exergy perspective[J]. Applied Energy, 2021, 298: 117187. |
| [25] | Geng J L, Sun H. A novel integrated hydrogen and natural gas liquefaction process utilizing a modified double mixed refrigerant process pre-cooling system[J]. Applied Thermal Engineering, 2023, 224: 120085. |
| [26] | Asadnia M, Mehrpooya M. A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems[J]. International Journal of Hydrogen Energy, 2017, 42(23): 15564-15585. |
| [27] | Zhang S G, Liu G L. Design and performance analysis of a hydrogen liquefaction process[J]. Clean Technologies and Environmental Policy, 2022, 24(1): 51-65. |
| [28] | Yu S P, Wang Z X, Qiu G D, et al. Optimization and analysis of a novel hydrogen liquefaction coupled system with dual path hydrogen refrigeration cycle and the closed nitrogen cycle pre-cooling[J]. Journal of Cleaner Production, 2024, 470: 143281. |
| [29] | Sun H, Xu J M, Wang C, et al. Optimization and analysis of a cascaded dual mixed refrigerant hydrogen liquefaction process considering the influence of pre-cooling stages[J]. International Journal of Hydrogen Energy, 2023, 48(81): 31653-31670. |
| [30] | Sun H, Geng J L, Wang C, et al. Optimization of a hydrogen liquefaction process utilizing mixed refrigeration considering stages of ortho-para hydrogen conversion[J]. International Journal of Hydrogen Energy, 2022, 47(39): 17271-17284. |
| [31] | Ganni V. Optimal design and operation of helium refrigeration systems[R]. Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States), 2010. |
| [1] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [2] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [3] | 石一帆, 柯钢, 陈浩, 黄孝胜, 叶芳, 李成娇, 郭航. 大型高低温环境实验室温度控制仿真[J]. 化工学报, 2025, 76(S1): 268-280. |
| [4] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [5] | 周有苗, 刘晔, 余锋, 罗小钰, 王斌辉. 双源压缩-喷射复合热泵系统构建及特性分析[J]. 化工学报, 2025, 76(S1): 36-42. |
| [6] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [7] | 沙鑫权, 胡然, 丁磊, 蒋珍华, 吴亦农. 空间用单机两级有阀线性压缩机研制及测试[J]. 化工学报, 2025, 76(S1): 114-122. |
| [8] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [9] | 杨语晴, 李银龙, 晏刚. 采用低GWP制冷剂的级联加热自复叠高温热泵循环热力学分析[J]. 化工学报, 2025, 76(S1): 43-53. |
| [10] | 彭建斌, 李明, 谢军龙, 陈建业. 液氢接收终端液氢泄漏扩散及爆炸超压研究[J]. 化工学报, 2025, 76(S1): 453-461. |
| [11] | 丁昊, 王林, 刘豪. R290/R245fa汽液相平衡混合规则对比研究[J]. 化工学报, 2025, 76(S1): 9-16. |
| [12] | 赵婧, 董书辰, 李高洋, 黄友科, 石浩森, 缪舒文, 谭辰妍, 朱唐琦, 李永帅, 潘慧, 凌昊. 基于电化学模型的电池性能模拟与优化[J]. 化工学报, 2025, 76(9): 4922-4932. |
| [13] | 田鹏, 张忠林, 任超, 孟国超, 郝晓刚, 刘叶刚, 侯起旺, ABUDULA Abuliti, 官国清. 基于自热再生的一种低温甲醇洗工艺建模与优化[J]. 化工学报, 2025, 76(9): 4601-4612. |
| [14] | 郭旭, 贾继宁, 姚克俭. 基于优化CNN-BiLSTM神经网络的间歇精馏过程建模[J]. 化工学报, 2025, 76(9): 4613-4629. |
| [15] | 王杰, 林渠成, 张先明. 基于分解算法的混合气体多级膜分离系统全局优化[J]. 化工学报, 2025, 76(9): 4670-4682. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号