化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4933-4943.DOI: 10.11949/0438-1157.20250074

• 能源和环境工程 • 上一篇    下一篇

基于双混合工质深冷的氢液化工艺优化与分析

刘璐1,2(), 王文玥1, 王腾1,2(), 王太1,2, 董新宇1,2, 汤建成3, 王少恒4   

  1. 1.华北电力大学动力工程系,河北 保定 071003
    2.河北省储能技术与能源综合利用重点实验室,河北 保定 071003
    3.北京大臻科技有限公司,北京 100080
    4.河北省酷德制冷科技有限公司,河北 保定 071000
  • 收稿日期:2025-01-17 修回日期:2025-06-29 出版日期:2025-09-25 发布日期:2025-10-23
  • 通讯作者: 王腾
  • 作者简介:刘璐(1984—),女,博士,教授,luliu@ncepu.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金(2023MS123)

Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling

Lu LIU1,2(), Wenyue WANG1, Teng WANG1,2(), Tai WANG1,2, Xinyu DONG1,2, Jiancheng TANG3, Shaoheng WANG4   

  1. 1.Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China
    2.Hebei Key Laboratory of Energy Storage Technology and Integrated Energy Utilization, North China Electric Power University, Baoding 071003, Hebei, China
    3.Beijing Da Zhen Technology Co. , Ltd. , Beijing 100080, China
    4.Hebei Kude Refrigeration Technology Co. , Ltd. , Baoding 071000, Hebei, China
  • Received:2025-01-17 Revised:2025-06-29 Online:2025-09-25 Published:2025-10-23
  • Contact: Teng WANG

摘要:

为降低氢液化过程的比能耗并提高深冷阶段的冷能利用率,提出一种新型的基于双混合工质深冷的级联氢液化工艺。该工艺使用混合工质预冷,通过级联的双混合工质逆布雷顿循环深冷。工艺的液氢产量为300 t/d,通过六级正仲氢转化后,产品仲氢浓度大于99%。利用Aspen HYSYS软件对工艺进行模拟,并在Matlab中调用遗传算法以比能耗为目标函数对工艺的关键参数进行优化。基于优化结果进行㶲分析和换热器性能分析,结果表明:优化后该工艺的比能耗为6.07 kWh/kg,㶲效率为53.01%。各级换热器的冷热流复合曲线更加匹配,最小换热温差均在1.0~1.5℃。该工艺设计可为大规模氢液化工艺的优化和改进提供参考。

关键词: 氢, 液化, 遗传算法, 优化, ?分析

Abstract:

To reduce the specific energy consumption of hydrogen liquefaction process and improve the utilization rate of cold energy in the deep-cooling stage, a novel cascade hydrogen liquefaction process based on dual mixed refrigerant deep-cooling is proposed. The process uses mixed refrigerant for pre-cooling and cascade double mixed refrigerant reverse Brayton cycles for deep-cooling. The process produces 300 t/d, and the para-hydrogen concentration of the product is more than 99%. The process was simulated using Aspen HYSYS software, and the genetic algorithm was called in Matlab to optimize the key parameters of the process with specific energy consumption as the objective function. The optimization results show that the specific energy consumption of the proposed process is 6.07 kWh/kg. The composite curves of heat exchanger are more matched, with a minimum internal temperature approach of 1.0—1.5℃. This process provides reference for the optimization and improvement of large-scale hydrogen liquefaction processes.

Key words: hydrogen, liquefaction, genetic algorithm, optimization, exergy analysis

中图分类号: